Lecture 6.

7 Vector bundles and the differential

Consider the Grassman manifold say $Gr_2(\mathbb{R}^4)$ of two planes in \mathbb{R}^4 . Let

$$\gamma = \{ (\Pi, x) \in \operatorname{Gr}_2(\mathbb{R}^4) \times \mathbb{R}^4 | x \in \Pi \}.$$

Let $p: \gamma \to \operatorname{Gr}_2(\mathbb{R}^4)$ be the natural projection. The fibers of p, $p^{-1}(\Pi)$ are vector spaces (in this case over the reals).

This is an example of a vector bundle. We'll give the definition appropriate for the world of smooth manifolds. There is an obvious version of the definition for more general topological spaces.

Definition 7.1. Let *V* be a vector space (over the reals, complexes or quaternions.) A vector bundle with fiber *V* is a triple (E, B, p) where *E* and *B* are smooth manifolds and $\pi : E \to B$ is a smooth map. For each $b \in B$, $p^{-1}(b)$ has the structure of a vector space over the same field as *V* and for each $b \in B$ there is an open set *U* and a smooth map $\phi : p^{-1}(U) \to V$ which is linear isomorphism on each fiber. In addition the map $\tau_{\phi} : p^{-1}(U) \to U \times V$ given by $\tau_{\phi}(e) =$ $(p(e), \phi(e))$ is a diffeomorphism.

The map τ_{ϕ} is called a *local trivialization*.

Example 7.2. Let

$$\gamma = \{ (\Pi, v) \subset \operatorname{Gr}_k(\mathbb{R}^n) \times \mathbb{R}^n | v \in \Pi \}.$$

We claim as the natural projection $p: \gamma \to \operatorname{Gr}_k(\mathbb{R}^n)$ has the structure of a vector bundle with fiber \mathbb{R}^k . Let $\phi: U_{\Pi} \to \operatorname{hom}(\Pi, \Pi^{\perp})$ be one of our charts. Then ϕ^{-1} is given by $A \to \Gamma_A \subset \mathbb{R}^n = \Pi \oplus \Pi^{\perp}$ where Γ_A denotes the graph of A. The map $\phi: p^{-1}(U_{\Pi}) \to \Pi$ is simply the orthogonal projection.

A very important notion is the transition function. Suppose we are given two trivializations $\tau_{\alpha} : p^{-1}(U_{\alpha}) \to U_{\alpha} \times V$ and $\tau_{\beta} : p^{-1}(U_{\beta}) \to U_{\beta} \times V$. Then get a map

$$g_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \mathrm{Gl}(V).$$

defined as follows. If

$$\tau_{\alpha}(v) = (p(v), \phi_{\alpha}(v)) \text{ and } \tau_{\beta}(v) = (p(v), \phi_{\beta}(v))$$

then

$$g_{\alpha\beta}(p(v))\phi_{\beta}(v) = \phi_{\alpha}(v).$$

The transition function satisfy the *cocycle condition*: If we have three trivializations $\tau_{\alpha}, \tau_{\beta}, \tau_{\gamma}$ over open sets $U_{\alpha}, U_{\beta}, U_{\gamma}$ then for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$

$$g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}=1$$

A vector bundle is determined its transition functions and give an open cover $\{U_{\alpha}\}$ and a collection of functions

$$g_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \mathrm{Gl}(V).$$

satisfying the cocycle condition we can construct a vector bundle.

7.1 New vector bundles from old

We can get new vector bundles from old bundles in a number of ways. Given $p_1: V_1 \to X$ and $p_2: V_2 \to X$ we can take direct (or Whitney) sum to get a bundle $V_1 \oplus V_2 \to X$ whose fiber above x is $p_1^{-1}(x) \oplus p_2^{-1}(x)$. Another important operation is the pullback. Suppose we have $p: V \to X$ and $f: Y \to X$ a smooth map. Then we can form a vector bundle over Y as follows. The total space denoted $f^*(V)$ is:

$$f^*(V) = \{(y, v) | f(y) = p(v)\}$$

and projection

$$f^*(p)(y,v) = y.$$