Lecture 6.

7 Vector bundles and the differential

Consider the Grassman manifold say $\mathrm{Gr}_{2}\left(\mathbb{R}^{4}\right)$ of two planes in \mathbb{R}^{4}. Let

$$
\gamma=\left\{(\Pi, x) \in \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right) \times \mathbb{R}^{4} \mid x \in \Pi\right\} .
$$

Let $p: \gamma \rightarrow \operatorname{Gr}_{2}\left(\mathbb{R}^{4}\right)$ be the natural projection. The fibers of $p, p^{-1}(\Pi)$ are vector spaces (in this case over the reals).

This is an example of a vector bundle. We'll give the definition appropriate for the world of smooth manifolds. There is an obvious version of the definition for more general topological spaces.
Definition 7.1. Let V be a vector space (over the reals, complexes or quaternions.) A vector bundle with fiber V is a triple (E, B, p) where E and B are smooth manifolds and $\pi: E \rightarrow B$ is a smooth map. For each $b \in B, p^{-1}(b)$ has the structure of a vector space over the same field as V and for each $b \in B$ there is an open set U and a smooth map $\phi: p^{-1}(U) \rightarrow V$ which is linear isomorphism on each fiber. In addition the map $\tau_{\phi}: p^{-1}(U) \rightarrow U \times V$ given by $\tau_{\phi}(e)=$ $(p(e), \phi(e))$ is a diffeomorphism.
The map τ_{ϕ} is called a local trivialization.

Example 7.2. Let

$$
\gamma=\left\{(\Pi, v) \subset \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right) \times \mathbb{R}^{n} \mid v \in \Pi\right\} .
$$

We claim as the natural projection $p: \gamma \rightarrow \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ has the structure of a vector bundle with fiber \mathbb{R}^{k}. Let $\phi: U_{\Pi} \rightarrow \operatorname{hom}\left(\Pi, \Pi^{\perp}\right)$ be one of our charts. Then ϕ^{-1} is given by $A \rightarrow \Gamma_{A} \subset \mathbb{R}^{n}=\Pi \oplus \Pi^{\perp}$ where Γ_{A} denotes the graph of A. The map $\phi: p^{-1}\left(U_{\Pi}\right) \rightarrow \Pi$ is simply the orthogonal projection.

A very important notion is the transition function. Suppose we are given two trivializations $\tau_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times V$ and $\tau_{\beta}: p^{-1}\left(U_{\beta}\right) \rightarrow U_{\beta} \times V$. Then get a map

$$
g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{Gl}(V)
$$

defined as follows. If

$$
\tau_{\alpha}(v)=\left(p(v), \phi_{\alpha}(v)\right) \text { and } \tau_{\beta}(v)=\left(p(v), \phi_{\beta}(v)\right)
$$

then

$$
g_{\alpha \beta}(p(v)) \phi_{\beta}(v)=\phi_{\alpha}(v) .
$$

The transition function satisfy the cocycle condition: If we have three trivializations $\tau_{\alpha}, \tau_{\beta}, \tau_{\gamma}$ over open sets $U_{\alpha}, U_{\beta}, U_{\gamma}$ then for all $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$

$$
g_{\alpha \beta} g_{\beta \gamma} g_{\gamma \alpha}=1
$$

A vector bundle is determined its transition functions and give an open cover $\left\{U_{\alpha}\right\}$ and a collection of functions

$$
g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{Gl}(V)
$$

satisfying the cocycle condition we can construct a vector bundle.

7.1 New vector bundles from old

We can get new vector bundles from old bundles in a number of ways. Given $p_{1}: V_{1} \rightarrow X$ and $p_{2}: V_{2} \rightarrow X$ we can take direct (or Whitney) sum to get a bundle $V_{1} \oplus V_{2} \rightarrow X$ whose fiber above x is $p_{1}^{-1}(x) \oplus p_{2}^{-1}(x)$. Another important operation is the pullback. Suppose we have $p: V \rightarrow X$ and $f: Y \rightarrow X$ a smooth map. Then we can form a vector bundle over Y as follows. The total space denoted $f^{*}(V)$ is:

$$
f^{*}(V)=\{(y, v) \mid f(y)=p(v)\}
$$

and projection

$$
f^{*}(p)(y, v)=y .
$$

