25 Differential forms and de Rham's Theorem

25.1 The exterior algebra

Let V be a finite dimensional vector space over the reals. The tensor algebra of V is direct sum

$$
\boldsymbol{T e n}(V)=\mathbb{R} \oplus V \oplus V^{\otimes 2} \ldots \oplus V^{\otimes k} \ldots
$$

It is made into an algebra by declaring that the product of $a \in V^{\otimes k}$ and $b \in$ $V^{\otimes l}$ is $a \otimes b \in V^{\otimes(k+l)}$. It is characterized by the universal mapping property that any linear map $V \rightarrow A$ where A is an algebra over \mathbb{R} extends to a unique map of $\operatorname{algebras} \operatorname{Ten}(V) \rightarrow A$.

The exterior algebra algebra is the quotient of exterior algebra by the relation

$$
v \otimes v=0 .
$$

The exterior algebra is denoted $\Lambda^{*}(V)$ or $\Lambda(V)$. It is customary to denote the multiplication in the exterior algebra by $(a,) \mapsto a \wedge b$ If $v_{1} \ldots v_{k}$ is a basis for V then this relation is equivalent to the relations

$$
\begin{aligned}
v_{i} \wedge v_{j} & =-v_{j} \wedge v_{i} \quad \text { for } \quad i \neq j \\
v_{i} \wedge v_{i} & =0
\end{aligned}
$$

Thus $\Lambda^{*}(V)$ has basis the products

$$
v_{i_{1}} \wedge v_{i_{2}} \ldots v_{i_{k}}
$$

where the indices run over all strictly increasing sequences of numbers between 1 and n.

$$
1 \leq i_{i}<i_{2}<\ldots<i_{k} \leq n
$$

Since for each k there are $\binom{n}{k}$ such sequences of length k we have

$$
\operatorname{dim}\left(\Lambda^{*}(V)\right)=2^{n}
$$

$\Lambda^{*}(V)$ since the relation is homogenous the grading of the tensor algebra descends to a grading on the exterior algebra (hence the *).

We can apply this construction fiberwise to a vector bundle. The most important example is the cotangent bundle of a manifold $T^{*} X$ in which case we get the bundle of differential forms

$$
\Lambda^{*}\left(T^{*} X\right) \quad \text { or } \quad \Lambda^{*}(X)
$$

We will denote the space of smooth sections of $\Lambda^{*}(X)$ by $\Omega^{*}(X)$. In local coordinates a typical element of $\Omega^{*}(X)$ looks like

$$
\omega=\sum_{1 \leq i_{i}<i_{2}<\ldots<i_{k} \leq n} \omega_{i_{i} i_{2} \ldots<i_{k}} d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots d x^{i_{k}}
$$

Since the construction of $\Lambda^{*}(X)$ was functorial in the cotangent bundle these bundles naturally pull back under diffeomorphism and if $f: X \rightarrow Y$ is any smooth map there is natural map

$$
f^{*}: \Omega^{*}(Y) \rightarrow \Omega^{*}(X)
$$

The most important thing about differential forms is the existence of a natural differential operator the exterior differential defined locally by the following rules

$$
\begin{aligned}
d f & =\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i} \\
d \omega & =\sum_{1 \leq i_{i}<i_{2}<\ldots<i_{k} \leq n} d \omega_{i_{i} i_{2} \ldots<i_{k}} \wedge d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots d x^{i_{k}} .
\end{aligned}
$$

Notice that we can't invariantly define a similar operator on the tensor algebra.
If we have a one form

$$
\theta=\sum_{i=1} f_{i} d x^{i}
$$

and try to define

$$
D \theta=\sum_{i=1} \frac{\partial f_{i}}{\partial x^{j}} d x^{j} \otimes d x^{i}
$$

then when if we have new coordinates $y^{1} \ldots y^{n}$ we have

$$
d x^{i}=\sum_{j=1}^{n} \frac{\partial x^{i}}{\partial y^{j}} d y^{j}
$$

and

$$
\theta=\sum_{m=1}^{n} g_{m} d y^{m}
$$

where

$$
g_{m}=f_{i} \frac{\partial x^{i}}{\partial y^{m}}
$$

$$
\begin{aligned}
D \theta & =\sum_{i=1} \frac{\partial f_{i}}{\partial x^{j}} d x^{j} \otimes d x^{i} \\
& =\frac{\partial f_{i}}{\partial x^{j}} \frac{\partial x^{i}}{\partial y^{l}} \frac{\partial x^{j}}{\partial y^{m}} d y^{m} \otimes d y^{l} \\
& =\frac{\partial f_{i}}{\partial y^{k}} \frac{\partial y^{k}}{\partial x^{j}} \frac{\partial x^{i}}{\partial y^{l}} \frac{\partial x^{j}}{\partial y^{m}} d y^{m} \otimes d y^{l} \\
& =\frac{\partial f_{i}}{\partial y^{m}} \frac{\partial x^{i}}{\partial y^{l}} d y^{m} \otimes d y^{l} \\
& =\frac{\partial f_{i}}{\partial y^{m}} \frac{\partial x^{i}}{\partial y^{l}} d y^{m} \otimes d y^{l} \\
& =\left(\frac{\partial}{\partial y^{m}}\left(f_{i} \frac{\partial x^{i}}{\partial y^{l}}\right)-f_{i} \frac{\partial^{2} x^{i}}{\partial y^{m} \partial y^{l}}\right) d y^{m} \otimes d y^{l} \\
& =\sum_{m=1}^{n} \frac{\partial g_{l}}{\partial y^{m}} d y^{m} \otimes d y^{l}-f_{i} \frac{\partial^{2} x^{i}}{\partial y^{m} \partial y^{l}} d y^{m} \otimes d y^{l} .
\end{aligned}
$$

Thus our definition depends on the choice of coordinates. Notice that when we pass to the exterior algebra this last expression vanishes that exterior derivative is well defined.

Theorem 25.1. $d^{2}=0$.

Proof. From the definition in local coordinates it suffices to check that $d^{2}=0$ on functions.

$$
d^{2}(f)=\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} d x^{i} \wedge d x^{j}=0
$$

since the f smooth so the matrix of second derivatives is symmetric.

Proposition 25.2.

$$
d(a \wedge b)=d a \wedge b+(-1)^{\operatorname{deg}(a)} \wedge d b
$$

Proof. The bilinearity of the wedge product implies that it suffices to check the result when

$$
a=f d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{k}}
$$

Definition 25.3. A cochain complex is a graded vector space $C=\sum_{i=0}^{\infty} C_{i}$ together with a map $d: C \rightarrow C$ so that $d C_{i} \subset C_{i+1}$ and $d^{2}=0$. The cohomology groups of a cochain complex are defined to be

$$
H^{i}(C, d)=\operatorname{ker}\left(d: C^{i} \rightarrow C^{i+1}\right) / \operatorname{Ran}\left(d: C^{i-1} \rightarrow C^{i}\right)
$$

