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Lecture 30. 

21.2 The Frobenious Integrability Theorem 

Next we consider when can a subbundle ξ of the tangent bundle T M of M can be 
brought into a canonical form. In generality this is a very complicated problem 
and we need to isolate manageable cases. The example that comes to mind is the 
case where �0|(x,y) = Tx Rn 

× {0} ⊂ Tx Rn 
× Tx Rm−n , the tangent bundle along 

a product. A subbundle which is locally diffeomorphic to �0 is called integrable. 
Notice that �0 is has following property. If 

n n
1 1 m ∂ X1 ai (x , . . . , xm )

∂

∂ 

xi 
, and X2 

� 
bi (x , . . . , x )= = 

∂xi 
i =1 i =1 

is a pair of local sections of �0 then the bracket 

n� � i ∂bj 

− bi ∂a j � ∂ 
[X1, X2] = a

∂xi ∂xi ∂x j 
i, j =1 

is also a local section of �. A subbundle with this property is called involutive.

Clearly any integrable subbundle is involutive.

Examples:


∂ 2zx ∂ ∂ 2zy ∂ 
,�1 = span{ 

∂x 
+ 

1 + x 2 + y2 ∂z ∂y 
+ 

1 + x 2 + y2 ∂z 
} 
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� � 

is involutive indeed it field of tangent planes to the family of paraboloids 

2z = λ(1 + x 2 
+ y ) 

On the other hand 
∂ ∂ ∂ 

�2 = span{ + y , }
∂ x ∂z ∂y 

is not involutive. In fact in has the interesting property that given any two points 
and any path connected neighborhood there is a path tangent to �2 joining the two 
points contained in the neighborhood. Clearly then �2 is not integrable. 

The following provides a converse. 

Theorem 21.4. (Frobenius). If � is involutive then it is integrable. 

Proof. Choose first a coordinate patch about of the from φ : U → Rn 
× Rm−n so 

that at φ(m) = 0 and φ∗(ξm ) = T0Rn 
× {0}. Set �1 = φ∗(�). 

Then in some neighborhood V × W of φ(m) = 0 we can find a function 
f : V × W × Rn 

→ Rm−n , linear in the last factor with f (0, 0, ·) = 0 and so that 
any ξ ∈ � can uniquely be written as 

ξ = (e, f (x , y, e). 

There is a natural homotopy of �0 to �1 given by 

�t = {(e, t f (t x , y, e)|e ∈ Rn 
}. 

We will show that there is a one parameter family of diffeomorphisms Ft so that 

1. Ft (0) = 0 and 

2. (Ft )∗(Xt ) = �0. 

Thus F1 is the desired change of coordinates. For x ∈ V let 

Xx (v, w) = (x , f (v, w, x )) 

Then the fact the �1 is involutive implies that [Xx , Xy ] ∈ �1 but [Xx , Xy ] is 
certainly of the form (O, ∗) since the constant vectors fields x and y commute so 
[Xx , Xy ] = 0. More explicitly 

[Xx , Xy ] = 0, D(v,w,x) f (y, f (v, w, y), 0) − D(v,w,y) f (x , f (v, w, x ), 0) = 0 
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Let Xt(v, w) = (0, f (tv, w, v)). A typical section of �t is Xt,x(u, v) = (x, t f (tv, w, x)). 
We can work out the bracket [Xt , Xt,x] 

[Xt , Xt,x] = 0, t D(tv,w,x) f (0, f (tv, w, v), 0) 

−t D(tv,w,v) f (x, f (tv, w, x), 0) − f (tv, w, x) 

= −t D(tv,w,x) f (v, 0, 0) − f (tv, w, x) 
d 

= − 
dt 

Xt,x 

dThus the Lie derivative of [(Xt , dt ), Xt,x] = 0 or equivalently if Ft is the flow of 
the time dependent vector field then we have (Ft)∗(Xs,x) = Xs+t,x as required. 

Here is a more intuitive proof by induction on the dimension. 

Proof. Induction on the dimension of the subbundle. The case of dimension one 
follows from the standard form for an nonvanishing vector field. The question 
is also local so we assume that we are given a subbundle of the tangent bundle 
of Rn defined in a neighborhood of 0 ∈ Rn . Suppose we have proved the result 
for all subbundles of dimension d. Let E be an involutive subbundle of TRn of 
dimension d+1. Choose a nowhere vanishing local section, X, of E. Next choose 
a coordinate system z1 , . . . , zn , centered at 0, so that ∂ X. TRn−1 

× {0} is
∂zn = 

an integrable hence involutive subbundle. E�
= E ∩ TRn−1 

× {0} defines a 
subbundle in a neighborhood of 0 of dimension d. Since E� is the intersection of 
two involutive subbundles it is involutive and so the induction hypothesis applies. 
We can find a coordinate system y1 , . . . , yn centered at 0 so that E� is given in a 
neighborhood of 0 as the span of y1 , . . . , yd In this new coordinate system X may 
not be straight but we have that 

∂ ∂ 

∂y1 
, . . . , 

∂yd 
, X 

forms a basis for E. We can write 

d� 
i ∂ X = a
∂yi 

+ X0 

i =1 

where X0 is section of T W. Then 

∂ ∂ 

∂y1 
, . . . , 

∂yd 
, X0 
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is also a basis for E. Since X0 is a section of T W so is [ 
∂
∂ 
yi , X0]. By involutivity 

it is parallel to X0 so there is a smooth function f1 defined in a neighborhood of 0 
with 

∂ 
[ 
∂yi 

, X0] = f1 X0. 

Set 
1 

fi (w, s, y2g1 = −int y
, . . . , yd)ds.0 

Then set 
X1 = exp(g1)X0. 

It is now easy to check that 
∂ 

[ 
∂yi 

, X1] = 0. 

X1 is still a section of T W so [ 
∂
∂ 
yi , X0] is parallel to X1 and we can find a smooth 

function f2 so that 
∂ 

[ 
∂yi 

, X1] = f2 X1 

We claim that 
∂ f2 

= 0. 
∂y1 

To see this notice that 

∂ ∂ ∂ f2[ 
∂y1 

, [ 
∂y2 

, X1] = 
∂y1 

X1 = 0. 

Using Jacobi’s identity we also have 

∂ ∂ ∂ ∂ ∂ ∂ 
[ 
∂y1 

, [ 
∂y2 

, X1] [[ 
∂y1 

,
∂y2

]X1] + [ 
∂y2 

, [ 
∂y1 

, X1]= 

= 0. 

So if we set � 2y

g2 = − fi (w, y1 3 , s, y , . . . , yd)ds. 
0 

and 
X2 = eg2 X1 

we have 
∂ 

[ 
∂yi 

, X2] = 0 
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for i = 1,2. Continuing in this fashion we eventually find Xd commuting with 
y1 , . . . , yd and we can construct the desired coordinate system as we did in class. 

21.3	 Foliations 

The local structure of the previous subsection has as its global counterpart the 
notion of a foliation. Here is the precise definition. 

Definition 21.5. A foliation F of M is a decomposition of M as a disjoint union 
of connected immersed submanifolds M = α∈A Lα called the leaves of F so 
that each point has a chart (U, φ) so that under φ the decomposition obtained 
from the decomposition � α∈A Lα ∩ U by taking components goes over to the 
decomposition of Rn 

= x ∈Rn−k Rk 
× x . 

It is important to realize that in the above definition we do not require the 
leaves to have the subspace topology. For example Consider the 2torus 

T 2 
= R2/Z2 

Fix a pair of real numbers (ζ1, ζ2) so that ζ1/ζ2 is irrational. The cosets of the 
subgroup � generated by {[t ζ1, t ζ2]|t ∈ R} give rise to a foliation with leaves that 
are not locally closed subsets. 

Remark 6. The space of leaves of a foliation is one setting where one runs into 
nonHausdorff manifolds. The space of leaves has a natural covering by charts 
(These may not be injective so be careful). 

22	 Characterizing a codimension one foliation in terms 
of its normal vector. 

Let F be a two dimensional foliation of R3. 

Proposition 22.1. Let n be a local normal vector field to F . Then 

n · (� × n) = 0 
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Proof. Write 
∂ ∂ ∂ 

n = a + b + c . 
∂ x ∂ y ∂ z 

By rotating the coordinates we can assume that none of a, b or c are zero. Then 
F is locally spanned by the local sections 

∂ ∂ ∂ ∂ ∂ ∂ 
−b + a , c − a , c − b 
∂ x ∂ y ∂ x ∂ z ∂ y ∂ z 

and we have 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
[−b + a , c − a ] = [−b 

∂ x 
, −a 

∂ z 
] + [a 

∂ y 
, c 
∂ x 

] + [a , −a ]
∂ x ∂ y ∂ x ∂ z ∂ y ∂ z 

∂a ∂ ∂b ∂ ∂c ∂ ∂a ∂ ∂a ∂ ∂a ∂ 
= b − a + a − c + −a + a 

∂ x ∂ z ∂ z ∂ x ∂ y ∂ x ∂ x ∂ y ∂ y ∂ z ∂ z ∂ y � ∂c ∂b ∂ ∂a ∂ ∂a ∂ ∂a ∂ ∂a ∂ 
= a (

∂ y 
− 
∂ z 
)
∂ x 

+ 
∂ z ∂ y 

− 
∂ y ∂ z 

) + b 
∂ x ∂ z 

+ −c 
∂ x ∂ y 

. 

Since we are assuming that F is involutive we have � ∂c ∂b ∂a ∂a 
a (

∂ y 
− 
∂ z 
)a + 

∂ z
b − 

∂ y
c) = 0. 

Since a �= 0 we have: � ∂c ∂b ∂a ∂a 
(
∂ y 

− 
∂ z 
)a + 

∂ z
b − 

∂ y
c) = 0. 

This same equation hold for any cyclic permutation of a, b, c and simultaneous 
permutation of x , y, z. Adding the resulting three equations gives � ∂c ∂b ∂a ∂c ∂b ∂a � 

2 (
∂ y 

− 
∂ z 
)a + ( − )b + ( − c) = 0. 

∂ z ∂ x ∂ x ∂ y 

as required. 

23 The holonomy of closed loop in a leaf 

Definition 23.1. Let F be a foliation of a manifold M . A transversal to F is 
smooth locally closed submanifold of M which meets all leaves transversally. A 
local transversal is a transversal which is diffeomorphic to a disk. 
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To discuss the holonomy we will use the terminology of a germs. 

Definition 23.2. Let X, Y be smooth manifolds. Fix a point x ∈ X . A germ of 
smooth mappings at x is the equivalence class of functions f : U → Y where 
U ⊂ X is an open neighborhood of x under the equivalence relation of agreement 
upon restriction. That is f : U → Y is equivalent to g : V → Y if there is a 
neighborhood W of x so that f |W = g|W . 

Let τ1 and τ2 be local transversals hitting the same leaf L of F . τ1 and τ2 are 
both contained in the same foliation chart U . Then the chart defines the germ of a 
diffeomorphism from τ1 at τ1 ∩ L to τ2 at τ2 ∩ L

Let γ : S1 
→ L be a C 1 closed loop based at x in a leaf L of foliation F . Let 

τ be a transversal to F passing through x . 

24 Reeb’s stability theorem 

Definition 24.1. A codimension one foliation is called transversally orientable if 
the normal bundle ν = T M/T F is orientable. 

Theorem 24.2. Let F be a normally oriented two dimensional foliation of a com
pact oriented three manifold. If F contains S2 as a closed leave then the pair 
M, F is diffeomorphic to S2 

× S1 with the product foliation by twospheres.. 

Remark 7. To see that the normally oriented condition is important in the state
ment of the result note the following. S2 

× S1 has an orientation preserving invo
lution τ : S2 

× S1 
→ S2 

× S1 given by 

τ(x , ei θ ) = (−x , e−i θ ). 

i θThis is a fixed point free involution so the quotient X = S2 
× S1/(x , e ) ∼ 

(−x, e−i θ ) has the structure of manifold as well. The product foliation is of S2 
× 

S1 is carried to itself by τ and descends to a foliation of X . The induced foliation 
is not normally oriented (can you see this). Most of the leaves are two sphere but 
there are two leaves which are real projective planes. 

Lemma 24.3. Let φ : D2 
→ M be an smooth embedding of D2 into M 3 with 

image contained in a leaf L of F . Then there is a foliating coordinate patch 
φ̃ : D2 

× (−�, �) → M 3 extending φ. 
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Proof. First of all it is straightforward to construct a coordinate patch ψ : D2 
× 

(−a,a) → M extending φ so that F is transverse to all the ψ({x }× (−a,a)) and 
so T F agrees with D(0,t )ψ(T0 D2 

×{0}). Transfer F to a foliation of D2 
×(−a,a) 

still called F . Let (r, θ) be polar coordinates in the disk. 
Define G on (D2 

\ {0})× (−a,a) to be the span of ∂ and 
∂
∂ 
t . By construction 

∂r 
G is transverse to F and so the intersection T F ∩ G defines a line field on (D2 

\ 
{0})× (−a,a). This line field is spanned by a vector field of the form v(r, θ, t ) = 
∂ 
∂r + a(r, θ, t ) ∂ . We have a(r, θ,0) = 0 and a(0, θ, t ) = 0. and let Fs denote the 

∂t 
time s flow of v. Fs (r, θ, t ) = (r + s, θ, Ts (r, θ, t )) when it is defined. Choose 
b small enough so that the time 1flow of v with initial conditions (0, θ, t ) for 
|t | < b is defined. Define a map φ̃ : D2 

× (−b,b) → D2 
\ {0}) × (−a,a) 

by sending (r, θ, t ) to the point (r, θ, Tr (0, θ, t )) or in words the time r flow of 
(0, θ, t ) under v. This map takes the line segment {(r, θ, t)|0 ≤ r < 1} to a leaf. 

∂Since for any θ v(0, θ, t ) = 
∂r is tangent to F , φ̃ carries D2 

× {t } onto a leaf. 
Thus φ̃ is the required map. 

Next we prove that in a neighborhood of a twosphere leaf the foliation has a 
product structure. 

Lemma 24.4. Suppose that L is a leaf of F which diffeomorphic to S2 The is 
a saturated neighborhood N of L which diffeomorphic to S2 

× (−a,a) with the 
product foliation. 

Proof. Decompose S2 
= D2 

−. By the previous lemma we can find standard + ∪ D2 

neighborhoods and glue them together to get the result. 

Next we will show that the set of points on a leaf diffeomorphic to S2 is both 
open and closed. 

Theorem 24.5. Let F be a transversally oriented foliation. Then there is a em
bedding γ : S1 

→ M transverse to the leaves. In fact γ can be chosen to pass 
through any point of M 

Remark 8. This is not to say that the image of γ hits all the leaves. This is a much 
stronger condition. A foliation with this addition property is called taut. The Reeb 
foliation of S3 is an example of a nontaut foliation. Any flow line can only touch 
the torus leaf once but a closed circle transverse to a torus in S3 must meet the 
torus in an even number of points. 
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Proof. Fix a point x0 ∈ M . Since F is transversally oriented there is a nowhere 
vanishing vector field, v, which is transverse to the leaves. Let Ft denote the time
t flow for this vector field and consider a particular flow line, γ , of this vector 
field. If this flow line is a periodic orbit we are done so suppose it is not. Then 
we claim that there is leaf that is hit infinitely often by the flowline. We can find 
x ∈ X and sequence ti → ∞ so that lim i →∞ Fti (x0) = x . Let U be a foliation 
chart in M about x . We can construct a smaller chart, V , about x by using the 
vector field v to flow away from the leaf L containing x . In V if a point is on a 
connected component of the part of the flow line in V it hits L. Since infinitely 
many points of γ in different components of γ ∩ V are contained in V the claim 
follows. 

Thus we can find a piece of orbit which contains x0 and hits some leaf twice 
and the points of intersection are contained in the patch V . It is straightforward to 
modify the piece of flow line in this patch to close it up. 

Now consider our transversally oriented foliation of M 3 containing a leaf L
diffeomorphic to S2. Let γ be a closed transverse curve passing through L. Let � 
denote the union of all the leaves which pass through �. We claim that � is all of 
M and that γ hits each leaf the same number of times. 

By Lemma 24.4 � is open. Also by this lemma there for each point y of γ 
there is a compact foliated neighborhood diffeomorphic to S2 

× [0, 1]. By the 
compactness of γ finitely many such neighborhoods cover γ but then � is the 
union of finitely many closed sets and hence closed. Finally consider the function 
which associates to each point y of γ the of points of γ contained in the same leaf 
as y. By Lemma 24.4 this is a continuous function and hence is constant. 

Finally choose a new γ which hits L once and hence all leaves once. Then 

h : L × γ → M 

given by taking y ∈ L and t ∈ γ to the unique point in the leaf through t hit by 
the flow line of v through y is the required diffeomorphism. 
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