Lecture 14.

15 Whitney's embedding theorem, medium version.

Theorem 15.1. (Whitney). Let X be a compact n-manifold. Then M admits a embedding in \mathbb{R}^{2n+1} .

Proof. From Theorem [?] we can assume that M is embedded in \mathbb{R}^N for some N. To state the next result for a hyperplane $\Pi \subset \mathbb{R}^N$ let $p_{\Pi} : \mathbb{R}^N \to \Pi$ denote the orthogonal projection. Note that the set of hyperplanes in \mathbb{R}^N is a copy of \mathbb{RP}^{N-1} by associating to each hyperplane the orthogonal line. The desired result follows from:

Lemma 15.2. If N > 2n + 1 then for a full measure set of hyperplanes $\Pi \subset \mathbb{R}^N$ the composition $p_{\Pi} \circ \Phi$ is a differentiable embedding of M into Π .

Proof. Let $\Delta \subset M \times M$ be the diagonal, $\Delta = \{(x, x) | x \in M\}$. Define the map

$$a: M \times M \setminus \Delta \to \mathbb{RP}^{N-1}.$$

which sends distinct points x and x' to the line through the origin parallel to the line passing through x and x' or equivalently the line through 0 and x - x'. Notice that $p_{\Pi} \circ \Phi$ is injective if and only if a misses the line orthogonal to Π . If 2n < 1

N - 1 then any point in the image of *a* is a critical value and hence by Sard's theorem the image of has measure zero. Thus the set of then the image of *a* has measure zero and so the set of hyperplane for which the composition is injective is a Baire set.

Next consider the projectivization of the tangent bundle of M, $\mathbb{P}(TM)$. This is a fiber bundle over M with fiber \mathbb{RP}^{n-1} . The total space of the bundle is a smooth manifold of dimension 2n - 1. Define the map

$$b: \mathbb{P}(TM) \to \mathbb{RP}^{N-1}$$

which sends a line $\ell \in T_x M$ to the line $D_x \Phi(\ell)$ in \mathbb{R}^N . Notice that the differential of $p_{\Pi} \circ \Phi$ is injective precisely when the line orthogonal to Π is not in the image of *b*. If 2n - 1 < N - 1 then as above the image of *b* has full measure.

Thus the set of good planes is the intersection of two sets of full measure and hence had full measure itself. $\hfill\square$

 \square

Notice that the condition on the map b was weaker then the condition on the map a so the proof also proves:

Proposition 15.3. If M is a closed smooth n-manifold then M immerses into \mathbb{R}^{2n} .

Proof.

We'll use this theorem to prove the hard version of Whitney's theorem.