Lecture 14.

15 Whitney's embedding theorem, medium version.

Theorem 15.1. (Whitney). Let X be a compact n-manifold. Then M admits a embedding in $\mathbb{R}^{2 n+1}$.

Proof. From Theorem [?] we can assume that M is embedded in \mathbb{R}^{N} for some N. To state the next result for a hyperplane $\Pi \subset \mathbb{R}^{N}$ let $p_{\Pi}: \mathbb{R}^{N} \rightarrow \Pi$ denote the orthogonal projection. Note that the set of hyperplanes in \mathbb{R}^{N} is a copy of $\mathbb{R} \mathbb{P}^{N-1}$ by associating to each hyperplane the orthogonal line. The desired result follows from:

Lemma 15.2. If $N>2 n+1$ then for a full measure set of hyperplanes $\Pi \subset \mathbb{R}^{N}$ the composition $p_{\Pi} \circ \Phi$ is a differentiable embedding of M into Π.

Proof. Let $\Delta \subset M \times M$ be the diagonal, $\Delta=\{(x, x) \mid x \in M\}$. Define the map

$$
a: M \times M \backslash \Delta \rightarrow \mathbb{R P}^{N-1}
$$

which sends distinct points x and x^{\prime} to the line through the origin parallel to the line passing through x and x^{\prime} or equivalently the line through 0 and $x-x^{\prime}$. Notice that $p_{\Pi} \circ \Phi$ is injective if and only if a misses the line orthogonal to Π. If $2 n<$
$N-1$ then any point in the image of a is a critical value and hence by Sard's theorem the image of has measure zero. Thus the set of then the image of a has measure zero and so the set of hyperplane for which the composition is injective is a Baire set.

Next consider the projectivization of the tangent bundle of $M, \mathbb{P}(T M)$. This is a fiber bundle over M with fiber $\mathbb{R} \mathbb{P}^{n-1}$. The total space of the bundle is a smooth manifold of dimension $2 n-1$. Define the map

$$
b: \mathbb{P}(T M) \rightarrow \mathbb{R P}^{N-1}
$$

which sends a line $\ell \in T_{x} M$ to the line $D_{x} \Phi(\ell)$ in \mathbb{R}^{N}. Notice that the differential of $p_{\Pi} \circ \Phi$ is injective precisely when the line orthogonal to Π is not in the image of b. If $2 n-1<N-1$ then as above the image of b has full measure.

Thus the set of good planes is the intersection of two sets of full measure and hence had full measure itself.

Notice that the condition on the map b was weaker then the condition on the map a so the proof also proves:

Proposition 15.3. If M is a closed smooth n-manifold then M immerses into $\mathbb{R}^{2 n}$.

Proof.

We'll use this theorem to prove the hard version of Whitney's theorem.

