Lecture 13.

14 Fiber bundles

The notion of a vector bundle has a natural and useful generalization, that of a fiber bundle. Here is a basic example.

Example 14.1. A *k*-frame for \mathbb{R}^n is a *k*-tuple (e_1, \ldots, e_k) of linearly independent vectors.

Let $St_k(\mathbb{R}^n)$ be the space of all *k*-frames for \mathbb{R}^n . This the Stiefel manifold. There is a natural map

$$p: \operatorname{St}_k(\mathbb{R}^n) \to \operatorname{Gr}_k(\mathbb{R}^n)$$

given by sending the k-tuple to $(v_1, v_2, ..., v_k)$ to its span. This map is a submersion and the preimage of small open sets can be given a product structure.

Definition 14.2. A (locally trivial) fiber bundle with fiber *F* is triple (E, B, p) where $p: E \rightarrow B$ is a smooth map so that for all $b \in B$ in *B* there is a neighborhood *U* of *b* and a diffeomorphism:

$$\tau \colon p^{-1}(U) \to U \times F$$

so that $p_1 \circ \tau = p$ where $p_1 \colon U \times F \to U$ is the projection.

In our example let U_{Π} be one of our standard charts and let $F = \text{Inj}(\mathbb{R}^k, \mathbb{R}^n)$ be the space of injective linear maps. This an open subset of hom $(\mathbb{R}^k, \mathbb{R}^n)$ so it is a manifold. We'll define the inverse of the trivialization

$$\tau^{-1}: U_{\Pi} \times F \to p^{-1}(U_{\Pi}).$$

To do this we need to fix an identification of $\iota: \Pi \to \mathbb{R}^k$. Then

$$\tau^{-1}(\Gamma_A, j) = (A \circ \iota \circ je_1), A \circ \iota \circ j(e_2), \dots, A \circ \iota \circ j(e_k)).$$

where as usual $A: \Pi \to \Pi^{\perp}$ is a linear transformation and Γ_A is its graph.

For another example consider a real vector bundle $p: E \to B$. The projectivization of *E*, denoted $\mathbb{P}(E)$ is space of lines in *E* and has natural projection $p': \mathbb{P}(E) \to B$ which is a fiber bundle with fiber \mathbb{RP}^{n-1} .