Homework 2

Due Monday 9/27/04
Exercise 1. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{2} map with uniformly bouned first and second derivatives. F induces a map

$$
\tilde{F}: C^{0}[0,1] \rightarrow C^{0}[0,1]
$$

by composition; $\tilde{F}(u)$ is the function $t \mapsto F(u(t))$ Show that \tilde{F} is a C^{1} map. More generally let given a Banach space B let $B^{0}=C^{0}([0,1], B)$ be the be space of contiuous maps from $[0,1]$ to B. Show that B^{0} is a Banach space. If $F: B \rightarrow B$ is a C^{2} map with uniformly bounded first and second derivatives, then the map induced by composition \tilde{F} is C^{1}

Exercise 2. Let $A: B \rightarrow B$ be a bounded linear operator. Consider the linear ODE in a Banach space

$$
\frac{d u}{d t}+A u=0
$$

with the intial condition $u(0)=v$. First show that the solution is given by

$$
e^{-t A} v
$$

where the time dependent operator $e^{-t A}$ is defined by showing the usual power series for the expotential is convergent in the Banach space of bounded linear operator from B to itself. Let $B^{0}=C^{0}([0, \epsilon], B)$ and $B^{1}=C^{1}([0, \epsilon], B)$. Then we can view the differntial equation as giving rise to a map

$$
L: B^{1} \rightarrow B^{0} \times B
$$

where

$$
L(u)=\left(\frac{d u}{d t} A u, u(0)\right)
$$

Show that L is invertible and indeed its inverse is given by the familiar formula

$$
L^{-1}(u, v)=e^{-t A} v+\int_{0}^{t} e^{A(s-t)} u(s) d s
$$

Exercise 3. The exercise uses the previous one to prove the existence and uniqueness theorem for first order ordinary differential equations. Let B be a Banach space and let $X: B \rightarrow B$ be a C^{2} map with bounded derivaitves. We seek a solution to the differntial question

$$
\frac{d u}{d t}+X(u)=0
$$

subject to the initial condition $u(0)=v$. Let $B^{0}=C^{0}([0, \epsilon], B)$ and $B^{1}=$ $C^{1}([0, \epsilon], B)$. Then we can view the differntial equation as given rise to a map

$$
F: B^{1} \rightarrow B^{0} \times B
$$

where

$$
F(u)=\left(\frac{d u}{d t}+X(u), u(0)\right)
$$

Assuming the first exercise show that this a C^{1} map. Show that The differential at 0 is the map

$$
D_{0} F(u)=\left(\frac{d u}{d t}+D_{0} X(u), u(0)\right)
$$

which by the second exercise is invertible. Conclude from the this and the inverse function theorem the existence and unique ness theorem.

Exercise 4. Suppose that $V \rightarrow X$ is given as a subbundle of the trivial bundle $X \times \mathbb{R}^{n} \rightarrow X$ via a family of projections Π. Then the induced connection is $\Pi \circ d$ where d denotes the ordinary derviative. Given a local basis for V find the connection matrix for the connection. Use this formula to find a connection matrix for $\gamma \rightarrow \mathbb{C P}^{n}$ be the tautogical bundle. (The tautological bundle sits inside the trivial \mathbb{C}^{n+1} bundle.)

