18.965 Fall 04

Homework 1

Exercise 1. Prove that the grassmanians $G r_{k}\left(\mathbb{F}^{n}\right)$ for $\mathbb{F}=\mathbb{R}, \mathbb{C}$, or \mathbb{H} are smooth manifolds.

Exercise 2. Prove that the $O(n)$ and $U(n)$ are smooth manifolds. Here is one hint. Show that if A is a skew symmetric (skew hermitian) matrix then

$$
O=(I+A)(1-A)^{-1}
$$

is orthogonal (unitary). Thus we have map from a Euclidean space to the coresponding group. Show that this map is a homemorphism onto an open neighbhor of the identity and its inverse gives us a chart. By translating the map by elements of the group show that you get an atlas.

Exercise 3. In class we noted the coincidences of the basic smooth manifolds

$$
S^{1}=\mathbb{R P}^{1}, S^{2}=\mathbb{C P}^{1}, S^{3}=S U(2)=S p(1), \mathbb{R P}^{3}=S 0(3)
$$

It is also the case that $G r_{2}\left(\mathbb{R}^{3}\right)=G r_{1}\left(\mathbb{R}^{3}\right)=\mathbb{R} \mathbb{P}^{3}$. Show that in general $G r_{k}\left(\mathbb{F}^{n}\right)$ is diffeomorphic to $G r_{n-k}\left(\mathbb{F}^{n}\right)$ where $\mathbb{F}=\mathbb{R}, \mathbb{C}$,or \mathbb{H}.

Given these coincidences the obviously distinct four dimensional (compact without boundary) manifolds we know from class are

1. S^{4}
2. $S^{3} \times S^{1}$
3. $S^{2} \times S^{2}$
4. $S^{2} \times \mathbb{R} \mathbb{P}^{2}$
5. $S^{2} \times S^{1} \times S^{1}$
6. $S^{1} \times S^{1} \times S^{1} \times S^{1}$
7. $\mathbb{R} \mathbb{P}^{4}$
8. $\mathbb{R} \mathbb{P}^{3} \times S^{1}$
9. $\mathbb{R} \mathbb{P}^{2} \times \mathbb{R} \mathbb{P}^{2}$
10. $\mathbb{R}^{2} \mathbb{P}^{2} \times S^{1} \times S^{1}$
11. $\mathbb{C P}^{2}$
12. $\mathbb{H P}^{1}$
13. $G_{2}\left(\mathbb{R}^{4}\right)$
14. $U(2)$

Which of the manifolds in the list are diffeomorphic?

