
MIT OpenCourseWare 
http://ocw.mit.edu 

18.917 Topics in Algebraic Topology: The Sullivan Conjecture 
Fall 2007 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Analytic Functors Revisited (Lecture 35)


In this lecture, we will revisit the relationship between unstable modules over the (mod 2) Steenrod 
algebra A and analytic functors from the category of F2 vector spaces to itself. 

Let Vect denote the category of F2-vector spaces, Vectf the full subcategory consisting of finite dimen­
sional vector spaces, and Fun the category of all functors from Vectf to Vect. Recall that Funan denotes the 
category of analytic functors: that is, functors which can be obtained as colimits of functors F : Vectf Vect 
having the property that the function 

→ 

n �→ dimF (Fn)2 

is a polynomial. In particular, Funan contains the divided power functors Γn defined by the formula 

Γn(V ) = (V ⊗n)Σn . 

Let U denote the category of unstable modules over the Steenrod algebra. In a previous lecture, we 
studied a pair of adjoint functors 

f 
U �� �� Funan . 

g 

This adjunction was essentially uniquely determined by the requirement that f carries a free unstable module 
F (n) to the analytic functor Γn . We begin by reformulating this construction using Lannes’ T-functor. 

Let M be an unstable A-module. For every F2-vector space V , the A-module TV M is defined by the 
universal property 

Hom(TV M,N) � Hom(M,N ⊗ H∗(BV )). 

In particular, given a map V W , the composition→ 

M → TW M ⊗ H∗(BW ) → TW M ⊗ H∗(BV ) 

is classified by a map TV M TW M . In other words, TV M is a covariant functor of V .→ 

Proposition 1. The functor f : U Funan is defined by the formula→ 

f(M)(V ) = (TV M)0 . 

Proof. This formula evidently defines a colimit-preserving functor from U to Funan. It is therefore determined 
by its values on free unstable A-modules (since any module admits a free resolution). We will show that the 
above formula has the correct behavior on objects, and leave to the reader to check that the behavior on 
morphisms is correct. For this, we compute 

(TV F (n))0 � Hom(TV F (n), F2)∨ 

� Hom(F (n), H∗(BV ))∨ 

� Hn(BV )∨ 

� Symn(V ∨)∨ 

� ΓnV. 
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From this description and the exactness of TV , we immediately deduce that the functor f : U Funan →
is exact. Of course, this reasoning is circular: earlier, we used the exactness of f to prove that H∗(BV ) was 
an injective object of U, which was a key step in the proof that the functor TV is exact. 

We now wish to generalize the above construction. We first expand on the observation that TV M depends 
functorially on V . Fix an integer n ≥ 0. We will say that an unstable A-module M is n-truncated if M i = 0 
for i > n. Given any unstable A-module M , we can define an n-truncated A-module τ ≤nM by the formula 

(τ≤nM)i = 
M i if i ≤ n 

0 otherwise. 

In other words, τ≤nM is the quotient of M obtained by killing all elements of degree larger than n. The 
collection of all n truncated unstable A-modules forms a category which we will denote by U≤n . This 
category inherits a symmetric monoidal structure �, given by the formula 

M � N �→ τ≤n(M ⊗ N), 

where ⊗ denotes the usual tensor product of A-modules. 
We now define a category Cn which is enriched over the opposite of U≤n, as follows: 

• The objects of Cn are finite dimensional F2-vector spaces V . 

• Given a pair of objects V and W , we have 

MapC(V,W ) = TV H∗(BW ) � H∗(BW )BV . 

• Composition in Cn is induced by the maps 

(BW )BV × (BV )BU (BW )BU → . 

We let Funn denote the category consisting of all U≤n,op-enriched functors from Cn to U≤n . In other 
words, an object F of Funn can be described as follows: 

• For every finite dimensional F2-vector space V , F (V ) is an n-truncated unstable A-module. 

• For every pair of F2-vector spaces V and W , we have an associated map of A-modules 

F (V ) → τ ≤n(TV H∗(BW ) ⊗ F (W )). 

• These maps are compatible with composition in the obvious sense. 

Example 2. Let M be an unstable A-module, and define PM (V ) by the formula 

PM (V ) = τ≤nTV (M). 

For every pair of F2-vector spaces V and W , the canonical map 

M → TW M ⊗ H∗(BW ) → TW M ⊗ TV H∗(BW ) ⊗ H∗(BV ) 

is adjoint to a map 
TV M → TW M ⊗ TV H∗(BW ). 

Truncating, we obtain a map 
PM (V ) → τ ≤n(PM (W ) ⊗ TV H∗(BW )), 

so that PM can be viewed as an object of Funn. 
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Example 3. Suppose n = 0. An n-truncated A-module M can be identified with its underlying F2-vector 
space M0 . An object F ∈ Fun0 associates to each F2-vector space V a new vector space F (V ), and to each 
pair (V,W ) a map 

F (W ) ⊗ H0(BW )BV � F (W ) ⊗ FHom(V,W )
F (V ) 2 .→ 

This is equivalent to giving a map F (V ) F (W ) for every map of vector spaces from V to W . In other→ 
words, we can identify F with a functor from Vectf to Vect. Consequently, Fun0 is canonically equivalent 
to the category Fun defined above. 

Remark 4. More generally, for any n ≥ 0 and any F ∈ Funn, we have canonical maps 

F (V ) → F (W ) ⊗ H0(BW )BV � F (W ) ⊗ FHom(V,W ) 
.2 

which allow us to view F (V ) ∈ U as a covariant functor of V . We will say that F is analytic (polynomial, 
etcetera) if this underlying functor is analytic. Let Funan 

n denote the full subcategory of Funn consisting of 
analytic functors. 

The construction M �→ PM defines a functor 

fn : U Funn .→ 

In the special case n = 0, we recover the functor studied earlier in this course. We now generalize some of 
our previous results: 

Proposition 5. Let n ≥ 0. 

(1) For every unstable A-module M , the functor fnM ∈ Funn is analytic. 

(2) The functor fn determines an adjunction 

fn 

U �� �� Funan .n gn 

(3) The functor fn is exact. 

(4) The functor gn is fully faithful. 

Proof. To prove (1), it suffices to treat the case where M is a free unstable module F (k). In this case, we 
have we will prove the following stronger assertion: 

(1�) The functor fnF (k) = PF (k) is polynomial and each PF (k)(V )i is finite dimensional. 

To prove this, we simply compute 

(fnF (k))(V )i � (TV F (k))i 

� Hom(TV F (k), J(i))∨ 

� Hom(F (k), J(i) ⊗ H∗(BV ))∨ 

� ⊕k=k�+k�� (J(i)k� 

)∨ ⊗ Γk� 

(V ). 

Assertion (2) follows from the adjoint functor theorem. Moreover, assertion (1�) yields a little bit more: 

(2�) The functor gn preserves filtered colimits. 
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To see this, we observe that for every integer i, we have 

(gn lim Gα)i � HomU(F (i), gn lim Gα)−→ −→ 
HomFunan (fnF (i), lim Gα)

n
� −→ 

lim HomFunan (fnF (i), Gα)
n

� −→ 
lim HomU(F (i), gnGα)� −→ 

� lim (gnGα)i 
−→

Assertion (3) follows from the exactness of Lannes’ T-functor. To prove (4), we need to introduce a bit 
of notation. For 0 ≤ i ≤ n, let IW,J(i) denote the object fn(J(i) ⊗ H∗(BW )) ∈ Funn. Since TV commutes 
with products and carries J(i) to itself, we have 

IW,J(i)(V ) = τ≤n(J(i) ⊗ TV H∗(BW )). 

Using Yoneda’s lemma, we deduce the existence of a canonical isomorphism 

HomFunn (F, IW,J(i)) = HomU(F (W ), J(i)). 

In particular IW,J(i) is injective in Funn. We claim that IW,J(i) is analytic. To prove this, it suffices to show 
that for j ≤ n the functor 

V �→ ⊕j=j�+j�� J(i)j� 

⊗ Hj�� 

(BW )BV 

is analytic. For this, it suffices to show that the functor 

V �→ Hi�� 

(BW )BV 

is analytic. This functor is a summand of the functor 

� H∗(BW ) ⊗ FHom(V,W ) 
.V �→ H∗(BW )BV 

2 

The first factor is constant, and the second factor was shown to be analytic in a previous lecture. 
Let M be an unstable A-module. We compute 

HomFunn (fnM, IW,J(i)) � HomU((fnN)(W ), J(i)) 

� HomU(τ ≤nTW M,J(i)) 
� HomU(TW M,J(i)) 
� HomU(M,J(i) ⊗ H∗(BW )). 

In other words, we can identify gnIW,J(i) with J(i) ⊗ H∗(BW ). It follows that the unit map fngn id is an 
isomorphism when evaluated on IW,J(i). 

→ 

Every object F ∈ Funan can be written as a union of its finitely generated subfunctors, which are n 
polynomial functors of finite type and therefore have finite length as objects of Funan 

n . It follows that Funan 
n 

is a locally Noetherian abelian category in which every Noetherian object has finite length. It follows that 
the indecomposable injective objects of Funan 

n are precisely the injective hulls of the simple objects. Let F 
be simple, and let I be an injective hull of F . Then for some vector space W , we have F (W ) = 0 so there �
exists a nontrivial map F (W ) → J(i) for 0 ≤ i ≤ n. This classifies a nonzero map F → IW,J(i). Since IW,J(i) 

is injective, we can extend this to a map φ : I → IW,J(i). The kernel of this map does not intersect F ⊆ I, 
and is therefore itself zero (since I is an injective hull of F ). It follows that φ is a monomorphism between 
injective objects of Funan 

n , so that φ splits. In other words, every indecomposable injective can be obtained 
as a direct summand of some IW,J(i). Since every injective object of Funan can be written as a direct sum n 
of indecomposable injectives (this is true in any Grothendieck abelian category), we conclude that every 
injective can be obtained as a summand of an expression of the form ⊕αIWα,J(iα). 
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It follows that any functor G ∈ Funan admits an injective resolutionn 

0 → G → ⊕αIWα ,J(iα) → ⊕β IWβ ,J(iβ ) 

Since fn and gn are both left exact, we get a diagram of short exact sequences 

0 �� G �� ⊕αIWα,J(iα ) �� ⊕β IWβ ,J(iβ ) 

�� �� ��
0 �� gnfnG �� gnfn ⊕α IWα,J(iα) �� gnfn ⊕β IWβ ,J(iβ ) 

To prove that the left vertical arrow is an isomorphism, it suffices to show that the other two vertical 
arrows are isomorphisms. Since fn and gn both commute with direct sums, we can reduce to the case where 
G = IW,J(i), which was handled above. 
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