MIT OpenCourseWare
http://ocw.mit.edu

18.917 Topics in Algebraic Topology: The Sullivan Conjecture

 Fall 2007For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Quaternionic Projective Space (Lecture 34)

The three-sphere S^{3} can be identified with $S U(2)$, and therefore has the structure of a topological group. In this lecture, we will address the question of how canonical this structure is. In the category of topological groups, the group structure on S^{3} is unique up to isomorphism. However, the purely homotopy-theoretic situation is not quite so nice: there exist uncountably many pairwise inequivalent group structures on spaces which are homotopy equivalent to S^{3} (we will return to this point at the end of the lecture). However, the situation is much simpler in p-adic homotopy theory, where p is a fixed prime. In this case, we again have a unique group structure on (the p-adic completion) of the homotopy type of S^{3}. We will sketch a proof of this result when p is odd, following the ideas of Dwyer, Miller and Wilkerson.

We begin by formulating the problem more precisely. In homotopy theory, giving a group structure on a homotopy type G is equivalent to realizing G as the loop space of a pointed space X. In this case, we have a fiber sequence

$$
G \rightarrow * \rightarrow X
$$

If $G=S^{3}$, then we can use the Serre spectral sequence to compute the $(\bmod p)$ cohomology ring of X : $\mathrm{H}^{*}(X) \simeq \mathbf{F}_{p}[t]$, where t lies in degree 4 (and transgresses to the fundamental class of $G=S^{3}$). Moreover, we have the same picture in the p-profinite category. We can now state the main result:

Theorem 1 (Dwyer, Miller, Wilkerson). Let X be a p-profinite space such that $\mathrm{H}^{*}(X) \simeq \mathbf{F}_{p}[t]$, where t lies in degree 4 . Then X is equivalent to the p-profinite completion $B S U(2)_{p}^{\vee}$ of the classifying space of the group $S U(2)$ (in other words, infinite dimensional quaternionic projective space).

The first step is to describe the cohomology $\mathrm{H}^{*}(X)$ as a representation of the mod- p Steenrod algebra \mathcal{A}_{p}. To simplify the exposition, we will consider only the case $p \neq 2$. We therefore begin with a few recollections on the structure of \mathcal{A}_{p} :

- For any space X (or any p-profinite space), the algebra \mathcal{A}_{p} acts on the cohomology ring $\mathrm{H}^{*}\left(X ; \mathbf{F}_{p}\right)$.
- The algebra \mathcal{A}_{p} is generated the Bockstein operator β of degree 1 , together with operations P^{i} of degree $2 i(p-1)$, for $i>0$.
- We have a Cartan formula

$$
P^{n}(x y)=\sum_{n=n^{\prime}+n^{\prime \prime}} P^{n^{\prime}}(x) P^{n^{\prime \prime}}(y)
$$

and a similar formula for β (which involves a sign). Here we agree by convention that $P^{0}=\mathrm{id}$.

- If $x \in \mathrm{H}^{2 i}\left(X ; \mathbf{F}_{p}\right)$, then $P^{i}(x)=x^{p}$ and $P^{j}(x)=0$ for $j>i$ (instability).
- We have $P^{1} P^{1}=2 P^{2}$ (this is a special case of the Adem relations, which we will not write out in full).

Lemma 2. Let X be as in the statement of Theorem 1. Then there exists an isomorphism $\alpha: \mathrm{H}^{*}(X) \simeq \mathbf{F}_{p}[t]$ such that the action of \mathcal{A}_{p} on $\mathrm{H}^{*}(X) \simeq \mathbf{F}_{p}[t]$ is determined by the Cartan formula, together with the relations

$$
\beta t=0
$$

$$
P^{i} t= \begin{cases}2 t^{\frac{p+1}{2}} & \text { if } i=1 \\ t^{p} & \text { if } i=2 \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. The formula $\beta t=0$ is obvious, since $\mathrm{H}^{5}(X) \simeq 0$. The expressions $P^{i} t$ vanishes for $i>2$ by instability, and $P^{2} t=t^{p}$. We have $P^{1}(t)=c t^{\frac{p+1}{2}}$ for some constant $c \in \mathbf{F}_{p}$; the only nontrivial point is to compute c. For this, we observe

$$
\begin{aligned}
2 t^{p} & =2 P^{2}(t) \\
& =P^{1} P^{1}(t) \\
& =c P^{1} t^{\frac{p+1}{2}} \\
& =c^{2} \frac{p+1}{2} t^{p}
\end{aligned}
$$

so that $c^{2}=\frac{4}{p+1}=4$. This has solutions $c= \pm 2$. However, if $c=-2$ then we can adjust the isomorphism α via the substitution $t \mapsto \lambda t$, where $\lambda \in \mathbf{F}_{p}$ is not a quadratic residue, to obtain an isomorphism with the desired property.

Corollary 3. There exists an isomorphism $\alpha: \mathrm{H}^{*}(X) \simeq \mathrm{H}^{*}(B S U(2))$ of unstable \mathcal{A}_{p}-algebras.
We now make a few remarks about the structure of the group $S U(2)$. We have injective group homomorphisms

$$
\mathbf{Z} / p \mathbf{Z} \hookrightarrow S^{1} \hookrightarrow S U(2) .
$$

These induce maps of classifying spaces

$$
B \mathbf{Z} / p \mathbf{Z} \rightarrow B S^{1} \rightarrow B S U(2),
$$

hence we get maps on cohomology

$$
\mathrm{H}^{*}(B \mathbf{Z} / p \mathbf{Z}) \leftarrow \mathrm{H}^{*}\left(B S^{1}\right) \leftarrow \mathrm{H}^{*}(B S U(2)) .
$$

A simple computation shows that each of these maps is injective, and we can identify the above with the sequence

$$
\mathbf{F}_{p}[u, \epsilon] \hookleftarrow \mathbf{F}_{p}[u] \hookleftarrow \mathbf{F}_{p}[t] .
$$

Here $t \mapsto u^{2}$, where u has degree 2 , and ϵ has degree 1 in $\mathrm{H}^{*}(B \mathbf{Z} / p \mathbf{Z})$ (and therefore squares to zero).
Lemma 4. There exists a map $\beta: B \mathbf{Z} / p \mathbf{Z} \rightarrow X$ such that the diagram

commutes.

Proof. We have

$$
\begin{aligned}
\pi_{0} \operatorname{Map}(B \mathbf{Z} / p \mathbf{Z}, X) & \simeq \operatorname{Hom}\left(\mathrm{H}^{*}\left(X^{B \mathbf{Z} / p \mathbf{Z}}\right), \mathbf{F}_{p}\right) \\
& \simeq \operatorname{Hom}\left(T \mathrm{H}^{*}(X), \mathbf{F}_{p}\right) \\
& \simeq \operatorname{Hom}\left(\mathrm{H}^{*}(X), \mathrm{H}^{*}(B \mathbf{Z} / p \mathbf{Z})\right)
\end{aligned}
$$

Here the Hom-sets on the right hand side are computed in the category of unstable \mathcal{A}_{p}-algebras. In other words, any map of \mathcal{A}_{p}-algebras from $\mathrm{H}^{*}(X)$ to $\mathrm{H}^{*}(B \mathbf{Z} / p \mathbf{Z})$ is necessarily induced by a map of p-profinite spaces $B \mathbf{Z} / p \mathbf{Z}$ to X (which is then uniquely determined up to homotopy).

Let Y be the connected component of the mapping space $X^{B \mathbf{Z} / p \mathbf{Z}}$ containing the map β. We then have isomorphisms

$$
\begin{aligned}
\mathrm{H}^{*}(Y) & \simeq \mathrm{H}^{*}\left(X^{B \mathbf{Z} / p \mathbf{Z}}\right) \otimes_{\mathrm{H}^{0}\left(X^{B \mathbf{Z} / p \mathbf{z}}\right)} \mathbf{F}_{p} \\
& \simeq T \mathrm{H}^{*}(X) \otimes_{\left(T \mathrm{H}^{*}(X)\right)^{0}} \mathbf{F}_{p}
\end{aligned}
$$

Consequently, the cohomology ring $\mathrm{H}^{*}(Y)$ depends only on $\mathrm{H}^{*}(X)$.
Let us temporarily assume that $X=B S U(2)_{p}^{\vee}$ and that β is the map induced by the group homomorphism $\mathbf{Z} / p \mathbf{Z} \rightarrow S U(2)$. The loop space ΩY can be identified with the space of homotopies from β to itself, which is a space of sections of a certain fibration

$$
E \rightarrow B \mathbf{Z} / p \mathbf{Z}
$$

with fiver $S U(2)_{p}^{\vee}$. This fibration corresponds to an action of $\mathbf{Z} / p \mathbf{Z}$ on $S U(2)_{p}^{\vee}$, which is simply induced by the action of $\mathbf{Z} / p \mathbf{Z}$ by conjugation. We therefore may therefore identify ΩY with the homotopy fixed set $\left(S U(2)_{p}^{\vee}\right)^{h \mathbf{Z} / p \mathbf{Z}}$. Using the p-profinite Sullivan conjecture, this can be identified with the p-profinite completion of the actual fixed set $S U(2)^{\mathbf{Z} / p \mathbf{Z}}$, which is simply the centralizer of $\mathbf{Z} / p \mathbf{Z}$ in $S U(2)$. A simple calculation shows that this centralizer coincides with the circle group $S^{1} \subseteq S U(2)$. It follows that $\Omega Y \simeq$ $\left(S^{1}\right)_{p}^{\vee}$. Using the Serre spectral sequence, we conclude that $\mathrm{H}^{*}(Y)$ is isomorphic to $\mathbf{F}_{p}[u]$, where u lies in degree 2. Moreover, the translation action of $B \mathbf{Z} / p \mathbf{Z}$ on itself determines a map $B \mathbf{Z} / p \mathbf{Z} \rightarrow Y$, which (after scaling u if necessary) is given on cohomology by the canonical inclusion

$$
\mathbf{F}_{p}[u] \hookrightarrow \mathbf{F}_{p}[u, \epsilon] .
$$

We now return to the general case. Since $\mathrm{H}^{*}(Y)$ depends only on $\mathrm{H}^{*}(X)$, we conclude that $\mathrm{H}^{*} \simeq \mathbf{F}_{p}[u]$ in general. Evaluation at the base point of $B \mathbf{Z} / p \mathbf{Z}$ induces a map $e: Y \rightarrow X$. Moreover, the composition

$$
B \mathbf{Z} / p \mathbf{Z} \rightarrow Y \xrightarrow{e} X
$$

can be identified with the map β. It follows that the above sequence induces, on cohomology, the maps

$$
\mathbf{F}_{p}[u, \epsilon] \hookleftarrow \mathbf{F}_{p}[u] \hookleftarrow \mathbf{F}_{p}[t] .
$$

Consider the map from $X^{B \mathbf{Z} / p \mathbf{Z}}$ to itself, given by composition with the map

$$
\mathbf{Z} / p \mathbf{Z} \xrightarrow{-1} \mathbf{Z} / p \mathbf{Z}
$$

This map induces the identify on $\mathrm{H}^{4}(B \mathbf{Z} / p \mathbf{Z})$, and therefore induces the identity map on $\operatorname{Hom}\left(\mathrm{H}^{*}(X), \mathrm{H}^{*}(B \mathbf{Z} / p \mathbf{Z})\right) \simeq$ $\pi_{0} X^{B \mathbf{Z} / p \mathbf{Z}}$. It therefore induces an involution on Y, which we will denote by i. We have a commutative diagram

which gives a commutative diagram of cohomology groups

Since the left vertical map carries u to $-u$, the right vertical map does as well. Let $Y_{h \mathbf{Z} / 2 \mathbf{Z}}$ denote the homotopy coinvariants of the involution on Y. Then the canonical map $Y \rightarrow Y_{h \mathbf{Z} / 2 \mathbf{Z}}$ induces an isomorphism

$$
\mathrm{H}^{*}\left(Y_{h \mathbf{Z} / 2 \mathbf{Z}}\right) \simeq \mathrm{H}^{*}(Y)^{\mathbf{Z} / 2 \mathbf{Z}} \simeq \mathbf{F}_{p}\left[u^{2}\right] .
$$

The base point of $B \mathbf{Z} / p \mathbf{Z}$ is invariant under the map given by multiplication by (-1), so the evaluation map $e: Y \rightarrow X$ is invariant under the action of i. Consequently, we obtain a factorization

This induces a commutative diagram of cohomology groups

We conclude that e^{\prime} induces an isomorphism on cohomology, and therefore a homotopy equivalence of p profinite spaces $Y_{h \mathbf{Z} / 2 \mathbf{Z}} \rightarrow X$.

We now identify the p-profinite space Y. Since the cohomology of Y lies entirely in even degrees, we can choose a compatible family of cohomology classes $u_{i} \in \mathrm{H}^{2}\left(Y ; \mathbf{Z} / p^{i} \mathbf{Z}\right)$ lifting u. These cohomology classes determine a map of p-profinite spaces

$$
Y \rightarrow " \lim _{\rightleftarrows} K\left(\mathbf{Z} / p^{k}, 2\right) "
$$

which we can identify with a map $Y \rightarrow\left(B S^{1}\right)_{p}^{\vee}$. This map induces an isomorphism on cohomology, and is therefore an equivalence of p-profinite spaces. We may therefore identify Y with the (p-profinite) EilenbergMacLane space $K\left(\mathbf{Z}_{p}, 2\right)$.

Now consider the involution i on Y. We claim that the homotopy fixed set $Y^{h \mathbf{Z} / 2 \mathbf{Z}}$ is nonempty: this follows from the vanishing of the cohomology group $\mathrm{H}^{3}\left(B \mathbf{Z} / 2 \mathbf{Z} ; \mathbf{Z}_{p}\right)$ (since p is different from 2). We may therefore assume without loss of generality that Y contains a point fixed by the involution i. In this case, i can be regarded as a pointed map from the Eilenberg-MacLane space $K\left(\mathbf{Z}_{p}, 2\right)$ to itself, which is given by a group homomorphism $h: \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p}$. Since h has order 2 , we deduce that h is given by the formula $h(z)=\lambda z$, where $\lambda= \pm 1$. Since i carries $u \in \mathrm{H}^{2}(Y)$ to $-u$, we deduce that $\lambda=-1$. We have therefore proven:

Theorem 5. Let X be as in Theorem 1 and p an odd prime. Then there is an equivalence of p-profinite spaces

$$
X \simeq K\left(\mathbf{Z}_{p}, 2\right)_{h \mathbf{Z} / 2 \mathbf{Z}}
$$

where the group $\mathbf{Z} / 2 \mathbf{Z}$ acts on \mathbf{Z}_{p} by the sign involution.

In particular, there is only one possibility for the homotopy type of X. Theorem 1 follows.
Let us now consider the same problem in the non- p-profinite world. Let X be a simply connected space such that $\mathrm{H}^{*}(X ; \mathbf{Z}) \simeq \mathrm{H}^{*}(B S U(2) ; \mathbf{Z}) \simeq \mathbf{Z}[t]$, where t lies in degree 4 (this is equivalent to the assertion that the loop space ΩX is homotopy equivalent to a three sphere S^{3}, by the Serre spectral sequence). We have a homotopy pullback diagram

Using Theorem 1 (and its analogue in the case $p=2$), we deduce that for each prime p we have a homotopy equivalence $\left.\widehat{X}_{p} \simeq \widehat{B S U(2}\right)_{p}$. A much easier argument shows that $X_{\mathbf{Q}} \simeq K(\mathbf{Q}, 4) \simeq B S U(2)_{\mathbf{Q}}$. We can therefore rewrite the above homotopy pullback diagram as

However, this does not imply that $X \simeq B S U(2)$, because the map ϕ has not been determined. The domain of ϕ can be identified with an Eilenberg-MacLane space $K(\mathbf{Q}, 4)$, and the codomain of ϕ with an Eilenberg-MacLane space $K\left(\left(\prod_{p} \mathbf{Z}_{p}\right)_{\mathbf{Q}}, 4\right)$, so that ϕ is determined up to homotopy by specifying an element $\eta \in\left(\prod_{p} \mathbf{Z}_{p}\right)_{\mathbf{Q}}$. Every invertible element $\eta \in\left(\prod_{p} \mathbf{Z}_{p}\right)_{\mathbf{Q}}$ gives rise to a space X which is a delooping of the sphere S^{3}. Not all of these choices are distinct (as an exercise, you can try to figure out when two choices of η give homotopy equivalent deloopings), but this "mixing" construction nevertheless yields uncountably many group structures on the homotopy type S^{3}.

