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The Sullivan Conjecture Revisited (Lecture 33)


In this lecture we will prove the following version of the Sullivan conjecture: 

Theorem 1. Let X be a simply connected finite cell complex, and let G be a finite group. Then the diagonal 
inclusion 

X XBG → 

is a weak homotopy equivalence. 

In the last lecture, we saw that X fits into a homotopy pullback square 

X �� X�p 

XQ �� ( X�p)Q. 

Let us say that a space Y is good if, for every finite group G, the diagonal map Y Y BG is a weak homotopy→
equivalence. The collection of good spaces is obviously stable under homotopy limits. Consequently, Theorem 
1 is an immediate consequence of the following: 

Proposition 2. Let X be a simply connected finite cell complex. Then: 

(1) For every prime p, the p-adic completion X�p is good. 

(2) The rationalization XQ is good. 

(3)	 The “adelic completion” ( p X
�

p)Q is good.


Assertions (2) and (3) follow from the following more general statement:


Lemma 3. Let Y be a rational space. Then Y is good. 

Proof. We wish to show that the map 

Map(∗, Y ) Map(BG, Y )→ 

is a homotopy equivalence, for every finite group G. Since Y is rational, it will suffice to show that the 
projection BG → ∗ is a rational homotopy equivalence. In other words, we must show that H∗(BG; Q) 
vanishes for ∗ > 0. This is clear: the higher cohomology of a finite group G is annihilated by the order G| |
of G. 

We now focus on the proof of part (1) in Proposition 2. Fix a prime number p. We will begin by studying 
the situation where the finite group G is a p-group. In this case, we have 

(X�p)BG � (lim Xp
∨)BG 

←− 
)BG).lim((Xp

∨� ←−
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Since X is finite dimensional, our p-profinite version of the Sullivan conjecture implies that the canonical 
map Xp

∨ (Xp
∨)BG is an equivalence of p-profinite spaces. Passing to the homotopy inverse limit, we get a →

homotopy equivalence 
X�p → (X�p)BG , 

as desired. 
Now let G be an arbitrary finite group. Let H be a p-Sylow subgroup of G. We have a canonical map 

BH BG; without loss of generality, we may arrange that this is a covering map whose fibers can be →
identified with the finite set G/H. We define a simplicial space K by the formula • 

Kn = BH ×BG BH ×BG × . . . ×BG BH, 

where the factor BH appears (n + 1)-times. We have a canonical homotopy equivalence 

|K | → BG. •

We can describe the space K more carefully as follows. Let M be the simplicial set with Mn = 
(G/H)n+1 . Then G acts (diagonally) on the simplicial set M , and the simplicial space K can be identified 
with the homotopy quotient (M )hG. Let K � be the simplicial set defined by the formula 

Kn
� = π0Kn, 

so that K � can be identified with the ordinary quotient (M •)G. We can identify an element of Kn
� with an • 

equivalence class of sequences (g0H, . . . , gnH), where each ci is a (right) coset of H in G, and two sequences 
(g0H, . . . , gnH) and (g0

�H, . . . , g� H) are equivalence if there exists an element g ∈ G such that giH = gg�Hn i

for 0 ≤ i ≤ n. 
For each n, the fiber of the map Kn K � over an n-tuple (g0H, . . . , gnH) can be identified with the 

classifying space BP , where P = g0Hg−
→
1 ∩ g

n 

1Hg−1 ∩ . . . ∩ gnHg−1 . In particular, P is conjugate to a 0 1 n 

subgroup of H, and is therefore a finite p-group. It follows that the diagonal map X�p (X�p)BP is a →
homotopy equivalence. Taking a product over all elemenets of Kn

� , we conclude that the map 

n(X�p)K�
(X�p)Kn → 

is a homotopy equivalence. 
We now compute 

(X�p)BG (X�p)|K •| 

� lim (X�p)Kn 

←−
nlim ( � )K�

� ←− Xp

� (X�p)|K•
� |. 

It will therefore suffice to show that the diagonal map 

X�p → Map(|K•
� |, X�p) 

is a homotopy equivalence. Since X�p is an Fp-local space, this is an immediate consequence of the following 
lemma: 

Lemma 4. The projection |K•
� | → ∗ induces an equivalence on Fp-homology. 

In other words, we claim that the homology groups H∗(|K•
� |; Fp) vanish for ∗ > 0. These are the homology 

groups of the complex 
. . . Fp[K � ] Fp[K � ] Fp[K � ] 0,→ 2 → 1 → 0 → 
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where Fp[Z] denotes the free Fp-vector space on a basis given by the elements of Z. The simplicial set K � 
• 

can be extended to an augmented simplicial set by defining K � = ∗ � ((G/H)0)G, so we get an augmented 
chain complex 

−1 

. . . [K � ] [K � ] [K � ] [K � ] 0.→ Fp 2 → Fp 1 → Fp 0 → Fp −1 → 

We will show that this chain complex is acyclic (in all degrees). For this, it suffices to exhibit a contracting 
chain homotopy h. We choose a homotopy h given by the formula 

1 � 
(g0H, . . . , gn	 (gH, g0H, . . . , gnH).H) �→ 

|G/H| 
g∈G/H 

This map is well-defined since it is clearly G-invariant, and the expression 1 makes sense in virtue of |G/H|
our assumption that H is a p-Sylow subgroup of G. A simple calculation shows that this map is indeed a 
contracting homotopy. This completes the proof of Theorem 1. 

Remark 5. We have assumed that X is a simply connected finite CW complex. This assumption was used 
in two ways: 

(1) We invoked the fact that	 X was simply connected and that the homotopy groups πiX are finitely 
generated, in order to use the arithmetic square discussed in the previous lecture. 

(2) We invoked the fact that X was finite dimensional so that we could appeal to our p-profinite version 
of the Sullivan conjecture. 

Assumptions (1) and (2) guarantee that X is a finite complex, at least up to homotopy equivalence. But 
Haynes Miller’s original proof of Theorem 1 actually works in a much more general setting: one only needs 
to assume that X is finite dimensional (in particular, the fundamental group π1X can be arbitrary). 
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