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Generating Analytic Functors (Lecture 10)


Let Funan denote the category of analytic functors from Vectf to Vect, as defined in the last lecture. Our 
goal in this lecture is to prove the following, which we stated without proof in the last lecture: 

Theorem 1. The abelian category Funan is generated by the divided power functors {Γn}n≥0. 

Let us say that a functor F : Vectf Vect is good if there exists a surjection → 

⊕αΓnα → F. 

Clearly, every good functor is analytic. Theorem 1 asserts the converse: every analytic functor is good. 
We observe that the collection of good functors is stable under quotients and direct sums. Consequently, 
every colimit of good functors is good. Since every analytic functor F is the direct limit of its polynomial 
subfunctors F (n) ⊆ F , Theorem 1 can be reformulated as follows: 

Proposition 2. Every polynomial functor F : Vectf Vect is good. → 

Now recall the projective objects PV ∈ Fun, defined in the last lecture by the formula PV (W ) = 
F2{HomF2 (V,W )}. These functors are not analytic, but they generate the category Fun of all functors 
from Vectf to Vect. In particular, we have a surjection 

⊕i∈I PVi → F 

in the category Fun. In particular, we can write F as a filtered colimit of subfunctors 

FI0 = im(⊕i∈I0 PVi → F ) ⊆ F. 

where I0 ranges over finite subsets of I. Since the collection of good functors is stable under colimits, it 
will suffice to show that each FI0 is a good functor. Proposition 2 is now an immediate consequence of the 
following assertion: 

Proposition 3. Let F be a polynomial functor, and suppose there exists a surjection 

⊕i∈I PVi → F, 

where the set I is finite. Then there exists a surjection 

⊕α∈AΓnα → F, 

where the set A is finite. 

Let us say that a functor G ∈ Fun is locally finite if G(V ) is finite dimensional for each V ∈ Vectf . The 
functors PVi are locally finite, as are the functors {Γn}n≥0. The duality functor D induces a (contravariant) 
equivalence from the category of locally finite functors to itself. Moreover, we observe that if G is locally 
finite, then we have an equality of dimension functors dG = dDG, so that G is polynomial if and only if G is 
polynomial. Proposition 3 can therefore be reformulated in the following dual form: 
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Proposition 4. Let F be a polynomial functor, and suppose that there exists an injection 

F �→ ⊕i∈I IVi 

where I is finite. Then there exists an injection 

F �→ ⊕α∈A Symnα 

where the set A is finite. 

For each i ∈ I, let Fi denote the image of F in IVi . Then Fi is a quotient of F , and therefore a polynomial 
functor. Moreover, we have an inclusion F �→ ⊕i∈I Fi. It will therefore suffice to prove Proposition 4 after 
replacing F by each Fi; in other words, we may suppose that I consists of a single element. We are therefore 
reduced to proving the following special case of Proposition 4: 

Proposition 5. Let V be a finite dimensional vector space over F2, and let F be a polynomial subfunctor 
of IV . Then there exists an injection 

F �→ ⊕α∈A Symnα 

where the set A is finite. 

Let us now suppose that V has dimension n, so that the functor IV can be written as a tensor product 

IF2 ⊗ IF2 ⊗ . . . ⊗ IF2 . 

As we observed last time, there is a canonical surjection 

Sym∗ � ⊕n≥0 Symn → IF2 . 

For 0 < n ≤ ∞, let Sn ⊆ IF2 denote the image of the direct sum 

⊕1≤i≤n Symi 

in IF2 . Then we have a direct sum decomposition IF2 � Sym0 ⊕S∞, so that IV can be written as a finite 
sum ⊕j∈J (S∞)⊗nj . We now apply our previous argument: for each j ∈ J , let Fj denote the image of F in 
(S∞)⊗nj . Then we have a monomorphism F → ⊕j∈J Fj , and it will suffice to prove the result after applying 
F by Fj . In other words, we may reformulate Proposition 5 as follows: 

Proposition 6. Let F be a polynomial functor, and suppose there exists an injection 

F �→ S∞ ⊗ . . . ⊗ S∞. 

Then there exists an injection 
F � Symm → 

for some m ≥ 0. 

We observe that the functor S∞ is the direct limit of the subfunctors {Sk ⊆ S∞}k≥1. Consequently, F 
is the direct limit of the subfunctors 

F ∩ (Sk ⊗ Sk ⊗ . . . ⊗ Sk). 

We claim that one of these subfunctors must coincide with F . This is a consequence of the following general 
fact: 

Lemma 7. Every locally finite polynomial functor F is a Noetherian object of Fun: in other words, there 
are no infinite ascending chains of subfunctors 

F0 ⊂ F1 ⊂ . . . ⊆ F. 
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Proof. Let F be a polynomial functor of degree ≤ m. Then the dimension function dF is a polynomial of 
degree ≤ m, and is therefore determined by its values on {0, 1, . . . ,m}. If we have an inclusion F � ⊆ F , then 
F � is also a polynomial of degree ≤ m and we have an inequality 

dF � (0) + . . . + dF � (m) ≤ dF (0) + . . . + dF (m) 

If equality holds, then dF � = dF , so that F � = F . Thus every chain of proper subfunctors of F has length at 
most dF (0) + . . . + dF (m). 

We can now Proposition 6 to the following: 

Proposition 8. Let F be a functor of the form (Sk)⊗n, where k ≥ 1 and n ≥ 0. Then there exists a 
monomorphism F �→ Symm for some m ≥ 0. 

Proposition 8 is obvious if n = 0 (in that case, F � Sym0 and we can take m = 0). The main difficulty 
is in the case n = 1, where we need the following result: 

Proposition 9. Let k ≥ 0. Then there exists a monomorphism of functors Sk+1 �→ Sym2k 

. 

We can reduce the general case to Proposition 9 using the following lemma: 

Lemma 10. Let m,m� > 0. Then there exists m�� > 0 and a monomorphism of functors 

Symm ⊗ Symm� 

→ Symm�� 

. 

Proof. For q ≥ 0, we have an iterated Frobenius map 

mSymm Sym2q 

→ 

.f �→ f2q 

It now suffices to observe that the composite map 

Symm ⊗ Symm� 

→ Sym2q m ⊗ Symm� 

�→ Symwq m+m� 

is a monomorphism for 2q > m�. 

We now prove Proposition 9 using an explicit construction of Kuhn. We note that the kernel of the map 
Sym∗(V ) IF2 (V ) is generated by v2 − v for v ∈ V . We can therefore describe the space Sk+1(V ) as the 
quotient of 

→
⊕1≤d≤k+1V ⊗d by the following relations: 

(1) If σ ∈ Σd is a permutation, then 

v1 ⊗ . . . ⊗ vd = vσ(1) ⊗ . . . ⊗ vσ(d) 

in Sk+1(V ). 

(2) If d < k, and v ∈ V , then

v1 ⊗ . . . ⊗ vd ⊗ v = v1 ⊗ . . . ⊗ vd ⊗ v ⊗ v


in Sk+1(V ). 

We define a map θ : ⊕1≤≤k+1V ⊗d → Sym2k 

(V ) by the formula 

θ(v1 ⊗ . . . ⊗ vd) = v 2
i1 
. . . v 2

id 
,1 d 

2i1 +...+2id =2k 
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It is clear that θ is compatible with the relations of type (1). We claim that θ is also compatible with 
relations of the type (2): that is, if d < k, then 

θ(v1 ⊗ . . . ⊗ vd ⊗ v) = θ(v1 ⊗ . . . ⊗ vd ⊗ v ⊗ v). 

To prove this, we observe that the right hand side is a sum of terms associated to sequences of integers 
(i1, . . . , id, j, k) where 2k = 2i1 +. . .+2id +2j +2k. The terms associated to (i1, . . . , id, j, k) and (i1, . . . , id, k, j) 
cancel if j =� k, while the terms associated to the sequence (i1, . . . , id, j, j) appear on the left hand side as 
associated to the sequence (i1, . . . , id, j + 1). To complete the proof, it will suffice to show that no other 
terms appear on the left hand side. In other words, we must show that if 2i1 + . . . + 2id + 2j = 2k, then 
j > 0. If not, we have 2i1 + . . . +2id = 2k − 1, which has k nonzero digits in its base 2-expansion. Since each 
term in the sum is a power of 2, the sum must include at least k terms, which contradicts our assumption 
that d < k. 

We have now shown that θ is compatible with the relations (1) and (2), and therefore defines a map 

θ : Sk+1(V ) Sym2k 

(V ). This map is evidently functorial in V , and so defines a natural transformation of→ 

functors ψ : Sk+1 Sym2k 

. To complete the proof of Proposition 9, it will suffice to show that this natural→
transformation is a monomorphism. In other words, we must show that each of the maps Sk+1(V ) 
Sym2k 

(V ) is injective. 
→ 

To prove this, we will need the following lemma: 

Lemma 11. Let F and F � be nonzero subfunctors of S∞. Then F ∩ F � = 0� . 

Proof. We compute that the endomorphism ring 

R = HomFun(IF2 , IF2 ) � IF2 (F2)∨ � F2 ⊕ F2 

has dimension 2 over the field F2. The endomorphism ring S∞ is properly contained in R, and therefore has 
dimension 1 over F2. It follows that every nonzero endomorphism of S∞ is an isomorphism. 

Suppose F ∩ F � = 0. Then the induced map F → S∞/F � is a monomorphism. Since S∞ is injective, we 
can solve the lifting problem depicted in the diagram 

F�
�
� ���S

∞ 

f � 

S∞/F �. 

Composing f with the projection map S∞ → S∞/F �, we obtain an endomorphism f : S∞ → S∞. This 
endomorphism is not an isomorphism, since f |F � = 0. Consequently, f = 0. Since f |F is the identity, we 
deduce that F = 0, a contradiction. 

Let us apply Lemma 11 in the case F = Sym1 � S1 ⊆ S∞ and F � = ker(ψ). If ψ is not a monomorphism, 
then ker(ψ) is nonzero, so F ∩ F � = 0. In other words, for some vector space� V the composite map 

Sym1(V ) Sk+1(V ) θ Sym2k 

(V )→ → 

is not injective. But this map is simply the iterated Frobenius v �→ v2k 
, and we obtain a contradiction. 
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