
LECTURE 33: CHERN CLASSES AND ELEMENTARY 

SYMMETRIC POLYNOMIALS 

Today we describe how the sum formula and the splitting principle are related 
to the theory of symmetric polynomials. 

We proved the splitting principle inductively by splitting off one line at a time: 

L1 ⊕ · · · ⊕ Ln 
// · · · // L2 ⊕ L1 ⊕ V2 

// L1 ⊕ V1 
// V 

�� �� �� ��
// // //P (Vn−2) P (V1) P (V ) X· · · //

Here, the maps on the base spaces all induce injections on cohomology. 
We wish to implement this for the universal vector bundle V n 

univ → BU(n). 
We first record a general lemma 

Lemma 0.1. There is an equivalence 

B(G ×H) � BG ×BH.


Proof. One just needs to check that G ×Hbundles are products of Hbundles and

Gbundles. �


Observe that we have a fibration 

U(n)/(U(1) × U(n − 1)) → B(U(1) × U(n − 1)) → BU(n). 

The universal bundle pulls back to Luniv � V n−1 
univ . The action of U(n) on CPn−1 

has stabilizer U(1) × U(n − 1), giving an identification of the fiber as 

U(n)/(U(1) × U(n − 1)) = CPn−1 . 

In fact, identifying B(U(1) × U(n − 1)) with EU(n)/(U(1) × U(n − 1)), we have 
the following lemma 

Lemma 0.2. The map 
P (V n 

univ ) → BU(n) 
is equivalent to the map 

B(U(1) × U(n − 1)) → BU(n). 

The universal instance of the splitting principle is therefore given by the map 
induced from the inclusion of the maximal torus Tn = U(1)n ≤ U(n): 

// V nLuniv � · · ·� Luniv univ 

�� ��
// BU(n)B(U(1) × · · · × U(1)) 

We have shown the map 
φZ[c1, . . . , cn] = H∗(BU(n)) − H∗(BU(1)n) = Z[x1, . . . , xn]→ 
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is an injection. 
Let NTn be the normalizer of Tn in U(n). The quotient of NTn by Tn is called 

the Weyl group, and is given by 

NTn/Tn = Σn.∼

Here, the induced conjugation action of Σn on Tn is given by permutation of the 
factors. 

In the homework, you showed that the action of conjugation of an element of G 
on H∗(BG) was trivial. We deduce that the image of the map φ is invariant under 
the action of Σn, giving an injection 

φ ΣnZ[c1, . . . , cn] = H∗(BU(n)) − H∗(BU(1)n)Σn = Z[x1, . . . , xn] .→ 

The righthand side is the ring of symmetric polynomials, which is known to be a 
polynomial algebra on the elementary symmetric polynomials: 

Z[x1, . . . , xn]Σn = Z[e1, e2, . . . , en]. 

Here, ei is the ith elementary symmetric polynomial : 

ei(x1, . . . , xn) = xj1 · · ·xji . 
1≤j1 <···<ji ≤n 

Explicitly: 

e1 + xn,= x1 + x2 + · · ·
e2 = x1x2 + x1x3 + · · · , 

. . . 
xn.en = x1x2 · · ·

Claim 0.3. The inclusion 

φ : Z[c1, . . . , cn] � Z[e1, . . . , en]→ 

is an isomorphism. The generator ci is mapped to ei. 

In fact, Claim 0.3 is equivalent to the sum formula. Indeed, assume we know the 
sum formula. Let 

pi : BU(1)n BU(1)→
be the projection onto the ith component, and let Li = p∗ 

i Luniv . Then we have 

φ(ci) = ci(Luniv � · · ·� Luniv ) 

n)= ci(L1 ⊕ · · · ⊕ L

= ci1 (L1) · · · cin (Ln) 
+in =ii1 +···

= xj1 · · ·xji 

1≤j1 <···<ji ≤n 

= ei. 

Conversely, we can deduce the sum formula from Claim 0.3. Indeed, the splitting 
principle tells us that we need only prove the sum formula for sums of line bundles. 
Claim 0.3 does this for the universal example of a sum of line bundles. The general 
case is then obtained by pullback from the universal example. 
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