LECTURE 31: COMPLETION OF A DEFERRED PROOF, WHITNEY SUM, AND CHERN CLASSES

1. A deferred proof

From the last lecture, I constructed for a sub-Lie group H of a Lie group G a map

$$
\phi: E G / H \rightarrow B H
$$

and owed you a proof of
Proposition 1.1. The map ϕ is an equivalence, and the map induced by the inclusion

$$
i: H \hookrightarrow G
$$

is the quotient map

$$
i_{*}: B H \simeq E G / H \rightarrow E G / G=B G .
$$

We first state some easy lemmas.
Lemma 1.2. The induction functor

$$
\operatorname{Ind}_{H}^{G}=G \times_{H}(-): H \text {-spaces } \rightarrow G \text {-spaces }
$$

is left adjoint to the restriction functor

$$
\operatorname{Res}_{H}^{G}: G \text {-spaces } \rightarrow H \text {-spaces }
$$

which regards a G-space X as an H-space. In particular, there is a natural isomorphism

$$
\operatorname{Map}_{G}\left(G \times_{H} X, Y\right) \cong \operatorname{Map}_{H}(X, Y)
$$

for an H-space X and a G-space Y.
Given G-bundles $E \rightarrow B$ and $E^{\prime} \rightarrow B^{\prime}$, a G-equivariant map

$$
f: E \rightarrow E^{\prime}
$$

gives rise to a map of bundles

Lemma 1.3. There is an equivalence of bundles

$$
E \cong(f / G)^{*} E^{\prime}
$$

[^0]Sketch proof of Proposition 1.1. We need to construct a map in the opposite direction. The G-bundle $G \times_{H} E H \rightarrow B H$ is classified by a map

Let

$$
\tilde{f}: E H \rightarrow E G
$$

be the H-equivariant map adjoint to the map f. Let ψ be the induced map of H-orbits:

$$
\psi=\widetilde{f} / H: B H=E H / H \rightarrow E G / H
$$

The composite $\phi \circ \psi$ is seen to be an equivalence because it is covered by the H-equivariant composite

$$
E H \xrightarrow{\widetilde{f}} E G \rightarrow E H
$$

and thus classifies the universal bundle over $B H$.
The composite $\psi \circ \phi$ is covered by the H-equivariant composite

$$
\widetilde{h}: E G \rightarrow E H \xrightarrow{\tilde{f}} E G
$$

whose adjoint h gives a map of G-bundles

The bundle $G \times_{H} E G \rightarrow E G / H$ is easily seen to be classified by the quotient map $E G / H \rightarrow E G / G=B G$. Thus we can conclude that h is G-equivariantly homotopic to the map

$$
G \times_{H} E G \rightarrow E G
$$

which sends $[g, e]$ to $g e$. Thus the adjoint \widetilde{h} is H-equivariantly homotopic to the identity map $E G \rightarrow E G$. Taking H-orbits, we see that $\psi \circ \phi$ is homotopic to the identity.

2. Whitney Sum

Let V be an n-dimensional complex vector bundle over X and W be an m dimensional complex vector bundle over Y.

Definition 2.1. The external direct sum $V \boxplus W$ is the product bundle

$$
V \boxplus W=V \times W \rightarrow X \times Y
$$

where the vector space structure on the fibers is given by the direct sum.
Now assume $X=Y$.

Definition 2.2. The Whitney sum $V \oplus W$ is the $n+m$-dimensional complex vector bundle given by the pullback $\Delta^{*} V \boxplus W$, where

$$
\Delta: X \rightarrow X \times X
$$

is the diagonal.
Let $V_{\text {univ }}^{n}$ be the universal n-dimensional complex vector bundle over $B U(n)$. Let

$$
f_{n, m}: B U(n) \times B U(m) \rightarrow B U(n+m)
$$

be the classifying map of $V_{\text {univ }}^{n} \boxtimes V_{u n i v}^{m}$. Then if

$$
\begin{gathered}
f_{V}: X \rightarrow B U(n) \\
f_{W}: X \rightarrow B U(m)
\end{gathered}
$$

classify V and W, respectively, the composite

$$
X \xrightarrow{f_{V} \times f_{W}} B U(n) \times B U(m) \xrightarrow{f_{n, m}} B U(n+m)
$$

classifies $V \oplus W$.

3. Chern classes

Our computation of $H^{*}(B U(n))$ allows for the definition of characteristic classes for complex vector bundles.

Definition 3.1. Let $V \rightarrow X$ be a complex n-dimensional vector bundle, with classifying map

$$
f_{V}: X \rightarrow B U(n)
$$

We define the i th Chern class $c_{i}(V) \in H^{2 i}(X ; \mathbb{Z})$ to be the induced class $f_{V}^{*}\left(c_{i}\right)$ for $1 \leq i \leq n$. We use the following conventions:

$$
\begin{aligned}
c_{0}(V) & :=1 \\
c_{i}(V) & :=0 \quad \text { for } i>n
\end{aligned}
$$

These classes are natural: for a map $f: Y \rightarrow X$ we have

$$
c_{i}\left(f^{*} V\right)=f^{*} c_{i}(V)
$$

[^0]: Date: 4/28/06.

