HOMEWORK 11

DUE: MONDAY, MAY 8

Most functors on the category of complex vector spaces extend to constructions in the category of complex vector bundles over a space X. For instance, given complex vector bundles V and W, there exist vector bundles $V \otimes W$ and $\operatorname{Hom}(V,W)$. The fibers over a point $x \in X$ are given by

$$(V \otimes W)_x = V_x \otimes_{\mathbb{C}} V_y$$

 $\operatorname{Hom}(V, W)_x = \operatorname{Hom}_{\mathbb{C}}(V_x, W_x).$

These constructions are easily produced locally using a trivializing cover. Functoriality can than be used to give transition functions.

- 1. Suppose that L is a complex line bundle on a paracompact space. Let \overline{L} denote the *conjugate bundle*, where the fibers are given the conjugate action of \mathbb{C} .
- (a) Show that there is a bundle isomorphism $\overline{L} \cong \operatorname{Hom}(L, \mathbb{C})$, where \mathbb{C} denotes the trivial line bundle.
- (b) Conclude that there is a bundle isomorphism $L \otimes \overline{L} \cong \mathbb{C}$.
- (c) Deduce that $c_1(\overline{L}) = -c_1(L)$.
- 2. Viewing $\mathbb{C}P^{\infty}$ as the space of complex lines in \mathbb{C}^{∞} , consider the line bundle \mathcal{L} over $\mathbb{C}P^{\infty}$ whose fiber over a line $L \in \mathbb{C}P^{\infty}$ is the line L. Show that this bundle is isomorphic to the universal line bundle. (Hint: use the quotient map

$$S^{\infty} \to \mathbb{C}P^{\infty}$$

to give a model for $EU(1) \to BU(1)$. The universal vector bundle was defined to be $EU(1) \times_{U(1)} \mathbb{C} \to BU(1)$.)

- 3. Let \mathcal{L} be the restriction of the line bundle of problem 2 to $\mathbb{C}P^n$.
- (a) Show that the tangent bundle $T\mathbb{C}P^n$ to $\mathbb{C}P^n$ can be identified with the bundle $\operatorname{Hom}(\mathcal{L}, \mathcal{L}^{\perp})$. Here, \mathcal{L}^{\perp} is the perpendicular bundle of dimension n over $\mathbb{C}P^n$, whose fiber over a line L in \mathbb{C}^{n+1} is the perpendicular space L^{\perp} .
- (b) Use the axioms of Chern classes to deduce that

$$c_i(T\mathbb{C}P^{n+1}) = (-1)^i \binom{n+1}{i} x^i$$

where $x \in H^2(\mathbb{C}P^1)$ is the generator given by $c_1(\mathcal{L})$. Hint: show that there is an isomorphism

$$T\mathbb{C}P^{n+1} \oplus \mathbb{C} \cong T\mathbb{C}P^{n+1} \oplus (\overline{\mathcal{L}} \otimes \mathcal{L}) \cong \text{Hom}(\mathcal{L}, \mathbb{C}^{n+1}).$$