HOMEWORK 6

DUE: MONDAY, 3/20/06

1. (Hatcher) (a) Show that $\mathbb{C} P^{\infty}$ is a $K(\mathbb{Z}, 2)$.
(b) Show there is a map $\mathbb{R} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$ which induces the trivial map on $H_{*}(-)$ but a nontrivial map on $H^{*}(-)$. How is this consistent with the universal coefficient theorem?
2. (Hatcher) Given abelian groups G and H and CW complexes $K(G, n)$ and $K(H, n)$, show that the map $[K(G, n), K(H, n)]_{*} \rightarrow \operatorname{Hom}(G, H)$ sending a homotopy class $[f]$ to the induced homomorphism $f_{*}: \pi_{n} K(G, n) \rightarrow \pi_{n} K(H, n)$ is a bijection.
3. (This may be useful for the next problem) Let $f: X \rightarrow Y$ be a pointed map. Show that the cofiber of

$$
f \wedge 1: X \wedge Z \rightarrow Y \wedge Z
$$

is given by $C(f) \wedge Z$.
4. Let n be greater than 1. Assuming that there is a natural isomorphism

$$
\widetilde{H}_{k+n}(X \wedge M(\pi, k)) \cong \widetilde{H}_{n}(X, \pi)
$$

show that the universal coefficient theorem follows from the long exact sequence of the cofiber seqeuence

$$
\bigvee_{I} S^{n} \rightarrow \bigvee_{J} S^{n} \rightarrow M(\pi, n)
$$

The Snake lemma may be useful in the following two problems:
5. A directed system $\left\{A_{i}\right\}$ of abelian groups is a sequence of homomorphisms

$$
A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} \cdots .
$$

A map of directed systems

$$
\left\{A_{i}\right\} \rightarrow\left\{B_{i}\right\}
$$

is a sequence of homomorphisms $A_{i} \rightarrow B_{i}$ making the diagrams

commute. A short exact sequence of directed systems

$$
0 \rightarrow\left\{A_{i}\right\} \rightarrow \underset{1}{\left\{B_{i}\right\}} \rightarrow\left\{C_{i}\right\} \rightarrow 0
$$

is a short exact sequence at every level

$$
0 \rightarrow A_{i} \rightarrow B_{i} \rightarrow C_{i} \rightarrow 0
$$

(a) Show that $\underset{\longrightarrow}{\lim } A_{i}$ is given by the kernel of the map

$$
\phi: \bigoplus A_{i} \rightarrow \bigoplus A_{i}
$$

where $\phi\left(\sum a_{i}\right)=\sum f_{i}\left(a_{i}\right)+a_{i}$.
(b) Show that $\xrightarrow{\lim }$ is an exact functor from the category of directed systems of abelian groups to the category of abelian groups. That is to say, the direct limit of a short exact sequence of directed systems is a short exact sequence.
6. In a manner precisely analogous to the previous problem, you can consider the category of inverse systems of abelian groups

$$
A_{1} \stackrel{f_{1}}{\longleftarrow} A_{2} \stackrel{f_{2}}{\leftrightarrows} A_{3} \stackrel{f_{3}}{\leftrightarrows} \cdots
$$

(a) Show that a short exact sequence of inverse systems

$$
0 \rightarrow\left\{A_{i}\right\} \rightarrow\left\{B_{i}\right\} \rightarrow\left\{C_{i}\right\} \rightarrow 0
$$

gives rise to an exact sequence

$$
0 \rightarrow \underset{\leftrightarrows}{\lim } A_{i} \rightarrow \underset{\leftrightarrows}{\lim } B_{i} \rightarrow \underset{\leftrightarrows}{\lim } C_{i} \rightarrow \lim ^{1} A_{i} \rightarrow \lim ^{1} B_{i} \rightarrow \lim ^{1} C_{i} \rightarrow 0
$$

(b) Show that for a prime p, the sequence

$$
\mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \cdots
$$

has

$$
\begin{aligned}
\lim _{\leftrightarrows} & =0 \\
\lim ^{1} & =\mathbb{Z}_{p} / \mathbb{Z}
\end{aligned}
$$

Here, $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{i}$ are the p-adic integers.

