4 Categorical language

Let Vect $_{k}$ be the category of vector spaces over a field k, and linear transformations between them. Given a vector space V, you can consider the dual $V^{*}=\operatorname{Hom}(V, k)$. Does this give us a functor? If you have a linear transformation $f: V \rightarrow W$, you get a map $f^{*}: W^{*} \rightarrow V^{*}$, so this is like a functor, but the induced map goes the wrong way. This operation does preserve composition and identities, in an appropriate sense. This is an example of a contravariant functor.

I'll leave it to you to spell out the definition, but notice that there is a univeral example of a contravariant functor out of a category $\mathcal{C}: \mathcal{C} \rightarrow \mathcal{C}^{o p}$, where $\mathcal{C}^{o p}$ has the same objects as \mathcal{C}, but $\mathcal{C}^{o p}(X, Y)$ is declared to be the set $\mathcal{C}(Y, X)$. The identity morphisms remain the same. To describe the composition in $\mathcal{C}^{o p}$, I'll write $f^{o p}$ for $f \in \mathcal{C}(Y, X)$ regarded as an element of $\mathcal{C}^{o p}(X, Y)$; then $f^{o p} \circ g^{o p}=(g \circ f)^{o p}$.

Then a contravariant functor from \mathcal{C} to \mathcal{D} is the same thing as a ("covariant") functor from $\mathcal{C}^{o p}$ to \mathcal{D}.

Let \mathcal{C} be a category, and let $Y \in \operatorname{ob}(\mathcal{C})$. We get a map $\mathcal{C}^{o p} \rightarrow$ Set that takes $X \mapsto \mathcal{C}(X, Y)$, and takes a map $X \rightarrow W$ to the map defined by composition $\mathcal{C}(W, Y) \rightarrow \mathcal{C}(X, Y)$. This is called the functor represented by Y. It is very important to note that $\mathcal{C}(-, Y)$ is contravariant, while, on the other hand, for any fixed $X, \mathcal{C}(X,-)$ is a covariant functor (and is said to be "corepresentable" by $X)$.

Example 4.1. Recall that the simplex category $\boldsymbol{\Delta}$ has objects the totally ordered sets $[n]=$ $\{0,1, \ldots, n\}$, with order preserving maps as morphisms. The "standard simplex" gives us a functor $\Delta: \Delta \rightarrow$ Top. Now fix a space X, and consider

$$
[n] \mapsto \operatorname{Top}\left(\Delta^{n}, X\right) .
$$

This gives us a contravariant functor $\boldsymbol{\Delta} \rightarrow$ Set, or a covariant functor $\boldsymbol{\Delta}^{o p} \rightarrow$ Set. This functor carries in it all the face and degeneracy maps we discussed earlier, and their compositions. Let us make a definition.

Definition 4.2. Let \mathcal{C} be any category. A simplicial object in \mathcal{C} is a functor $K: \boldsymbol{\Delta}^{o p} \rightarrow \mathcal{C}$. Simplicial objects in \mathcal{C} form a category with natural transformations as morphisms. Similarly, semi-simplicial object in \mathcal{C} is a functor $\boldsymbol{\Delta}_{\text {inj }}^{o p} \rightarrow \mathcal{C}$,

So the singular functor Sin_{*} gives a functor from spaces to simplicial sets (and so, by restriction, to semi-simplicial sets).

I want to interject one more bit of categorical language that will often be useful to us.
Definition 4.3. A morphism $f: X \rightarrow Y$ in a category \mathcal{C} is a split epimorphism ("split epi" for short) if there exists $g: Y \rightarrow X$ (called a section or a splitting) such that the composite $Y \xrightarrow{g} X \xrightarrow{f} Y$ is the identity.

Example 4.4. In the category of sets, a map $f: X \rightarrow Y$ is a split epimorphism exactly when, for every element of Y there exists some element of X whose image in Y is the original element. So f is surjective. Is every surjective map a split epimorphism? This is equivalent to the axiom of choice! because a section of f is precisely a choice of $x \in f^{-1}(y)$ for every $y \in Y$.

Every categorical definition is accompanied by a "dual" definition.

Definition 4.5. A map $g: Y \rightarrow X$ is a split monomorphism ("split mono" for short) if there is $f: X \rightarrow Y$ such that $f \circ g=1_{Y}$.

Example 4.6. Again let $\mathcal{C}=$ Set. Any split monomorphism is an injection: If $y, y^{\prime} \in Y$, and $g(y)=g\left(y^{\prime}\right)$, we want to show that $y=y^{\prime}$. Apply f, to get $y=f(g(y))=f\left(g\left(y^{\prime}\right)\right)=y^{\prime}$. But the injection $\varnothing \rightarrow Y$ is a split monomorphism only if $Y=\varnothing$. So there's an asymmetry in the category of sets.

Lemma 4.7. A map is an isomorphism if and only if it is both a split epimorphism and a split monomorphism.

Proof. Easy!

The importance of these definitions is this: Functors will not in general respect "monomorphisms" or "epimorphisms," but:

Lemma 4.8. Any functor sends split epis to split epis and split monos to split monos.

Proof. Apply F to the diagram establishing f as a split epi or mono.

Example 4.9. Suppose $\mathcal{C}=\mathbf{A b}$, and you have a split epi $f: A \rightarrow B$. Let $g: B \rightarrow A$ be a section. We also have the inclusion $i: \operatorname{ker} f \rightarrow A$, and hence a map

$$
\left[\begin{array}{ll}
g & i
\end{array}\right]: B \oplus \operatorname{ker} f \rightarrow A
$$

I leave it to you to check that this map is an isomorphism, and to formulate a dual statement.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

