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So for example the boundary map d : Sn → Sn−1 is a natural transformation.

Example 3.6. Suppose that C and D are two categories, and assume that C is small. We may then
form the category of functors Fun(C,D). Its objects are the functors from C to D, and given two
functors F,G, Fun(C,D)(F,G) is the set of natural transformations from F to G. We let the reader
define the rest of the structure of this category, and check the axioms. We needed to assume that C
is small in order to guarantee that there is no more than a set of natural transformations between
functors.

For example, let G be a group (or a monoid) viewed as a one-object category. An object
F ∈ Fun(G,Ab) is simply a group action of G on F (∗) = A, i.e., a representation of G in abelian
groups. Given another F ′ ∈ Fun(G,Ab) with F ′(∗) = A′, a natural transformation from F → F ′

is precisely a G-equivariant homomorphism A→ A′.

4 Categorical language

Let Vectk be the category of vector spaces over a field k, and linear transformations between them.
Given a vector space V , you can consider the dual V ∗ = Hom(V, k). Does this give us a functor? If
you have a linear transformation f : V →W , you get a map f∗ : W ∗ → V ∗, so this is like a functor,
but the induced map goes the wrong way. This operation does preserve composition and identities,
in an appropriate sense. This is an example of a contravariant functor.

I’ll leave it to you to spell out the definition, but notice that there is a univeral example of
a contravariant functor out of a category C: C → Cop, where Cop has the same objects as C, but
Cop(X,Y ) is declared to be the set C(Y,X). The identity morphisms remain the same. To describe
the composition in Cop, I’ll write fop for f ∈ C(Y,X) regarded as an element of Cop(X,Y ); then
fop ◦ gop = (g ◦ f)op.

Then a contravariant functor from C to D is the same thing as a (“covariant”) functor from Cop
to D.

Let C be a category, and let Y ∈ ob(C). We get a map Cop → Set that takes X 7→ C(X,Y ), and
takes a map X → W to the map defined by composition C(W,Y ) → C(X,Y ). This is called the
functor represented by Y . It is very important to note that C(−, Y ) is contravariant, while, on the
other hand, for any fixed X, C(X,−) is a covariant functor (and is said to be “corepresentable” by
X).

Example 4.1. Recall that the simplex category ∆ has objects the totally ordered sets [n] =
{0, 1, . . . , n}, with order preserving maps as morphisms. The “standard simplex” gives us a functor
∆: ∆→ Top. Now fix a space X, and consider

[n] 7→ Top(∆n, X) .

This gives us a contravariant functor ∆ → Set, or a covariant functor ∆op → Set. This functor
carries in it all the face and degeneracy maps we discussed earlier, and their compositions. Let us
make a definition.
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Definition 4.2. Let C be any category. A simplicial object in C is a functorK : ∆op → C. Simplicial
objects in C form a category with natural transformations as morphisms. Similarly, semi-simplicial
object in C is a functor ∆op

inj → C,

So the singular functor Sin∗ gives a functor from spaces to simplicial sets (and so, by restriction,
to semi-simplicial sets).

I want to interject one more bit of categorical language that will often be useful to us.

Definition 4.3. A morphism f : X → Y in a category C is a split epimorphism (“split epi” for short)
if there exists g : Y → X (called a section or a splitting) such that the composite Y g−→ X

f−→ Y is
the identity.

Example 4.4. In the category of sets, a map f : X → Y is a split epimorphism exactly when, for
every element of Y there exists some element of X whose image in Y is the original element. So f is
surjective. Is every surjective map a split epimorphism? This is equivalent to the axiom of choice!
because a section of f is precisely a choice of x ∈ f−1(y) for every y ∈ Y .

Every categorical definition is accompanied by a “dual” definition.

Definition 4.5. A map g : Y → X is a split monomorphism (“split mono” for short) if there is
f : X → Y such that f ◦ g = 1Y .

Example 4.6. Again let C = Set. Any split monomorphism is an injection: If y, y′ ∈ Y , and
g(y) = g(y′), we want to show that y = y′. Apply f , to get y = f(g(y)) = f(g(y′)) = y′. But the
injection ∅→ Y is a split monomorphism only if Y = ∅. So there’s an asymmetry in the category
of sets.

Lemma 4.7. A map is an isomorphism if and only if it is both a split epimorphism and a split
monomorphism.

Proof. Easy!

The importance of these definitions is this: Functors will not in general respect “monomorphisms”
or “epimorphisms,” but:

Lemma 4.8. Any functor sends split epis to split epis and split monos to split monos.

Proof. Apply F to the diagram establishing f as a split epi or mono.

Example 4.9. Suppose C = Ab, and you have a split epi f : A→ B. Let g : B → A be a section.
We also have the inclusion i : ker f → A, and hence a map

[ g i ] : B ⊕ ker f → A .

I leave it to you to check that this map is an isomorphism, and to formulate a dual statement.
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