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37 Poincaré duality

Let M be a n-manifold and K a compact subset. By Theorem 32.1

Hn(M,M −K;R)
∼=−→ Γ(K; oM ⊗R) .

An orientation along K is a section of oM⊗R overK that restricts to a generator ofHn(M,M−x;R)
for every x ∈ K. The corresponding class in Hn(M,M − K;R) is a fundamental class along K,
[M ]K . We recall also the fully relative cap product pairing (in which p + q = n and L is a closed
subset of K)

∩ : Ȟp(K,L;R)⊗R Hn(M,M −K;R)→ Hq(M − L,M −K;R) .

We now combine all of this in the following climactic result.

Theorem 37.1 (Fully relative Poincaré duality). Let M be an n-manifold and K ⊇ L a pair of
compact subsets. Assume given an R-orientation along K, with corresponding fundamental class
[M ]K . With p+ q = n, the map

∩[M ]K : Ȟp(K,L;R)→ Hq(M − L,M −K;R) .

is an isomorphism.

We have seen that these isomorphisms are compatible; they form the rungs of the commuting 
ladder
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· · · // Ȟp−1(L) //

∩[M ]L
��

Ȟp(K,L) //

∩[M ]K
��

Ȟp(K) //

∩[M ]K
��

Ȟp(L) //

∩[M ]L
��

· · ·

· · · // Hq+1(M,M − L) // Hq(M − L,M −K) // Hq(M,M −K) // Hq(M,M − L) // · · ·

Also, if M is compact and R-oriented with fundamental class [M ] restricting along K to [M ]K , we
have the ladder of isomorphisms

· · · // Ȟp(M,L) //

∩[M ]

��

Ȟp(K,L) //

∩[M ]K
��

Ȟp+1(M,K) //

∩[M ]

��

Ȟp+1(M,L) //

∩[M ]

��

· · ·

· · · // Hq(M − L) // Hq(M − L,M −K) // Hq−1(M −K) // Hq−1(M − L) // · · ·

To prove this theorem, we will follow the same five-step process we used to prove the Orientation
Theorem 32.1. We have already prepared the Mayer-Vietoris ladder for this purpose. We will also
need:

Lemma 37.2. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subspaces of M . Then

Ȟp(Ak)→ Ȟp(A)

is an isomorphism.

Proof. This follows from the observation that a direct limit of direct limits is a direct limit.

Proof of Theorem 37.1. By the top ladder and the five-lemma, we may assume L = ∅; so we want
to prove that

∩[M ]K : Ȟp(K;R)→ Hq(M,M −K;R)

is an isomorphism.
(1) M = Rn, K a compact convex set. We claim that

Ȟ∗(K)
∼=−→ H∗(K) .

For any ε > 0, let Uε denote the ε-neighborhood of K,

Uε =
⋃
x∈K

Bε(x) .

For any y ∈ Uε there is a closest point in K, since the distance function to y is continuous and
bounded below on the compact set K and so achieves its infimum. If x′, x′′ ∈ K are the same
distance from y, then the midpoint of the segment joining x′ and x′′ is closer, but lies in K since
K is convex. So there is a unique closest point, f(y). We let the listener check that f : Uε → K is
continuous. It is also clear that if i : K → Uε is the inclusion then i ◦ f is homotopic to the identity
on Y , by an affine homotopy.
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Now let Dn be a disk centered at the origin and containing the compact set K, and consider
the commutative diagram

Hp(K)
∩[Rn]K // Hq(R

n,Rn −K)

Hp(Dn)

∼=

OO

//

∼=
��

Hq(R
n,Rn −Dn)

∼=

OO

∼=
��

Hp(∗) // Hq(R
n,Rn − ∗) .

The groups are zero unless p = 0, q = n. By naturality of the cap product, the bottom map is given
by 1 7→ 1 ∩ [Rn]∗, and this is [Rn]∗ since capping with 1 is the identity, and this fundamental class
is a generator of Hn(Rn,Rn − ∗).

(2) K a finite union of compact convex subsets of Rn. This follows by induction and the five
lemma applied to the Mayer-Vietoris ladder 36.2.

(3) K is any compact subset of Rn. This follows as before by a limit argument, using Lemmas
32.4 and 37.2.

(4) M arbitrary, K is a finite union of compact Euclidean subsets of M . This follows from (3)
and Theorem 36.2.

(5) M arbitrary, K an arbitrary compact subset. This follows just as in the proof of Theorem
32.1.

Let’s point out some special cases. With K = M , we get:

Corollary 37.3. Suppose that M is a compact R-oriented n-manifold, and let L be a closed subset.
Then (with p+ q = n) we have the commuting ladder whose rungs are isomorphisms:

· · · // Ȟp−1(L)

∩[M ]L
��

// Ȟp(M,L)

∩[M ]

��

// Hp(M)

∩[M ]

��

// Ȟp(L)

∩[M ]L
��

// · · ·

· · · // Hq+1(M,M − L) // Hq(M − L) // Hq(M) // Hq(M,M − L) // · · ·

With L = ∅, we get:

Corollary 37.4. Suppose thatM is an n-manifold, and let K be a compact subset. An R-orientation
along K determines (with p+ q = n) an isomorphism

∩[M ]K : Ȟp(K;R)→ Hq(M,M −K;R) .

The intersection of these two special cases is:

Corollary 37.5 (Poincaré duality). Let M be a compact R-oriented n-manifold. Then

∩[M ] : Hp(M ;R)→ Hn−p(M ;R)

is an isomorphism.
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