CHAPTER 3. COHOMOLOGY AND DUALITY

37 Poincaré duality

Let M be a n-manifold and K a compact subset. By Theorem 32.1

$$H_n(M, M-K; R) \xrightarrow{\cong} \Gamma(K; o_M \otimes R).$$

An orientation along K is a section of $o_M \otimes R$ over K that restricts to a generator of $H_n(M, M-x; R)$ for every $x \in K$. The corresponding class in $H_n(M, M-K; R)$ is a fundamental class along K, $[M]_K$. We recall also the fully relative cap product pairing (in which p + q = n and L is a closed subset of K)

$$\cap: \check{H}^p(K,L;R) \otimes_R H_n(M,M-K;R) \to H_q(M-L,M-K;R).$$

We now combine all of this in the following climactic result.

Theorem 37.1 (Fully relative Poincaré duality). Let M be an n-manifold and $K \supseteq L$ a pair of compact subsets. Assume given an R-orientation along K, with corresponding fundamental class $[M]_K$. With p + q = n, the map

$$\cap [M]_K : \check{H}^p(K,L;R) \to H_q(M-L,M-K;R) \,.$$

is an isomorphism.

We have seen that these isomorphisms are compatible; they form the rungs of the commuting ladder

Also, if M is compact and R-oriented with fundamental class [M] restricting along K to $[M]_K$, we have the ladder of isomorphisms

To prove this theorem, we will follow the same five-step process we used to prove the Orientation Theorem 32.1. We have already prepared the Mayer-Vietoris ladder for this purpose. We will also need:

Lemma 37.2. Let $A_1 \supseteq A_2 \supseteq \cdots$ be a decreasing sequence of compact subspaces of M. Then

$$\check{H}^p(A_k) \to \check{H}^p(A)$$

is an isomorphism.

Proof. This follows from the observation that a direct limit of direct limits is a direct limit. \Box

Proof of Theorem 37.1. By the top ladder and the five-lemma, we may assume $L = \emptyset$; so we want to prove that

$$\cap [M]_K : \check{H}^p(K; R) \to H_q(M, M - K; R)$$

is an isomorphism.

(1) $M = \mathbf{R}^n$, K a compact convex set. We claim that

$$\check{H}^*(K) \xrightarrow{\cong} H^*(K)$$
.

For any $\epsilon > 0$, let U_{ϵ} denote the ϵ -neighborhood of K,

$$U_{\epsilon} = \bigcup_{x \in K} B_{\epsilon}(x)$$

For any $y \in U_{\epsilon}$ there is a closest point in K, since the distance function to y is continuous and bounded below on the compact set K and so achieves its infimum. If $x', x'' \in K$ are the same distance from y, then the midpoint of the segment joining x' and x'' is closer, but lies in K since K is convex. So there is a unique closest point, f(y). We let the listener check that $f: U_{\epsilon} \to K$ is continuous. It is also clear that if $i: K \to U_{\epsilon}$ is the inclusion then $i \circ f$ is homotopic to the identity on Y, by an affine homotopy. Now let D^n be a disk centered at the origin and containing the compact set K, and consider the commutative diagram

The groups are zero unless p = 0, q = n. By naturality of the cap product, the bottom map is given by $1 \mapsto 1 \cap [\mathbf{R}^n]_*$, and this is $[\mathbf{R}^n]_*$ since capping with 1 is the identity, and this fundamental class is a generator of $H_n(\mathbf{R}^n, \mathbf{R}^n - *)$.

(2) K a finite union of compact convex subsets of \mathbb{R}^n . This follows by induction and the five lemma applied to the Mayer-Vietoris ladder 36.2.

(3) K is any compact subset of \mathbb{R}^n . This follows as before by a limit argument, using Lemmas 32.4 and 37.2.

(4) M arbitrary, K is a finite union of compact Euclidean subsets of M. This follows from (3) and Theorem 36.2.

(5) M arbitrary, K an arbitrary compact subset. This follows just as in the proof of Theorem 32.1.

Let's point out some special cases. With K = M, we get:

Corollary 37.3. Suppose that M is a compact R-oriented n-manifold, and let L be a closed subset. Then (with p + q = n) we have the commuting ladder whose rungs are isomorphisms:

With $L = \emptyset$, we get:

Corollary 37.4. Suppose that M is an n-manifold, and let K be a compact subset. An R-orientation along K determines (with p + q = n) an isomorphism

$$\cap [M]_K : \check{H}^p(K; R) \to H_q(M, M - K; R) \,.$$

The intersection of these two special cases is:

Corollary 37.5 (Poincaré duality). Let M be a compact R-oriented n-manifold. Then

$$\cap [M]: H^p(M; R) \to H_{n-p}(M; R)$$

is an isomorphism.

MIT OpenCourseWare https://ocw.mit.edu

18.905 Algebraic Topology I Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.