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35 Cech cohomology as a cohomology theory

Let X be any space, and let K ⊆ X be a closed subspace. We’ve defined the Čech cohomology of
K as the direct limit of H∗(U) as U ranges over the poset UK of open neighborhoods of K. This
often coincides with H∗(K) but will not be the same in general. Nevertheless it behaves like a
cohomology theory. To expand on this claim, we should begin by defining a relative version.

Suppose L ⊆ K is a pair of closed subsets of a space X. Let (U, V ) be a “neighborhood pair”
for (K,L):

L ⊆ K⊆ ⊆

V ⊆ U

with U and V open. These again form a directed set UK,L, with partial order given by reverse
inclusion of pairs. Then define

Ȟp(K,L) = lim−→
(U,V )∈UK,L

Hp(U, V ) .

We will want to verify versions of the Eilenberg-Steenrod axioms for these functors. For a start,
I have to explain how maps induce maps.

Let I be a directed set and A : I → Ab a functor. If we have an order-preserving map – a
functor – ϕ : J → I from another directed set, we get Aϕ : J → Ab; so (Aϕ)j = Aϕ(j). I can form
two direct limits: lim−→J Aϕ and lim−→I A. I claim that they are related by a map

lim−→
J
Aϕ→ lim−→

I
A .

Using the universal property of direct limits, we need to come up with compatible maps fj : Aϕ(j) →
lim−→I A. We have compatible maps ini : Ai → lim−→I A for i ∈ I, so we can take fj = inϕ(j).

These maps are compatible under composition of order-preserving maps.

Example 35.1. A closed inclusion i : K ⊇ L induces an order-preserving map ϕ : UK → UL. The
functor Hp : UK → Ab restricts to Hp : UL → Ab, so we get maps

lim−→
UK

Hp = lim−→
UK

Hpϕ→ lim−→
UL

Hp .

i.e.
i∗ : Ȟp(K)→ Ȟp(L) .

This makes Ȟp into a contravariant functor on the partially ordered set of closed subsets of X.

I can do the same thing for relative cohomology, and get the maps involved in the following two
theorems, whose proofs will come in due course.

Theorem 35.2 (Long exact sequence). Let (K,L) be a closed pair in X. There is a long exact
sequence

· · · → Ȟp(K,L)→ Ȟp(K)→ Ȟp(L)
δ−→ Ȟp+1(K,L)→ · · ·

that is natural in the pair.
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Theorem 35.3 (Excision). Suppose A and B are closed subsets of a normal space, or compact
subsets of a Hausdorff space. Then the map

Ȟp(A ∪B,A)
∼=−→ Ȟp(B,A ∩B)

induced by the inclusion is an isomorphism.

Each of these theorems relates direct limits defined over different directed sets. To prove them, I
will want to rewrite the various direct limits as direct limits over the same directed set. This raises
the following . . .

Question 35.4. When does ϕ : J → I induce an isomorphism lim−→J Aϕ→ lim−→I A?

This is a lot like taking a sequence and a subsequence and asking when they have the same
limit. There’s a cofinality condition in analysis, that has a similar expression here.

Definition 35.5. ϕ : J → I is cofinal if for all i ∈ I, there exists j ∈ J such that i ≤ ϕ(j).

Example 35.6. Any surjective order-preserving map is cofinal.
For another example, let (N>0, <) be the positive integers with their ususal order, and (N>0, |)

the same set but with the divisiblity order. There is an order-preserving map ϕ : (N>0, <)→ (N>0, |)
given by n 7→ n!. This map is far from surjective, but any integer n divides some factorial (n divides
n!, for example), so ϕ is cofinal. We claimed that both these systems produce Q as direct limit.

Lemma 35.7. If ϕ : J → I is cofinal then lim−→J Aϕ→ lim−→I A is an isomorphism.

Proof. Check that {Aϕ(j) → lim−→I A} satisfies the necessary and sufficient conditions to be lim−→J Aϕ.

1. For each a ∈ lim−→I A there exists j ∈ J and aj ∈ Aϕ(j) such that aj 7→ a: We know that there
exists some i ∈ I and ai ∈ A such that ai 7→ a. Pick j such that i ≤ ϕ(j). Then ai 7→ aϕ(j),
and by compatibility we get aϕ(j) 7→ a.

2. Suppose a ∈ Aϕ(j) maps to 0 ∈ lim−→I A. Then there is some i ∈ I such that ϕ(j) ≤ i and
a 7→ 0 in Ai. But then there is j′ ∈ J such that i ≤ ϕ(j′), and a 7→ 0 ∈ Aϕ(j′) as well.

Proof of Theorem 35.2, the long exact sequence. Let (K,L) be a closed pair in the space X. We
have

Ȟp(K,L) = lim−→
(U,V )∈UK,L

Hp(U, V ) , Ȟp(K) = lim−→
U∈UK

Hp(U) , and Ȟp(L) = lim−→
V ∈VL

Hp(V ) .

We can rewrite the entire sequence as the direct limit of a directed system of exact sequences indexed
by UK,L, since the order-preserving maps

UK ← UK,L → UL

U 7→(U, V ) 7→ V

are both surjective and hence cofinal. So the long exact sequence of a pair in Čech cohomology is
the direct limit of the system of long exact sequences of the neighborhood pairs (U, V ) and so is
exact.
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The proof of the excision theorem depends upon another pair of cofinalities.

Lemma 35.8. Assume that X is a normal space and A,B closed subsets, or that X is a Hausdorff
space and A,B compact subsets. Then the order-preserving maps

U(A∪B,B) ← UA × UB → U(A,A∩B)

given by
(W ∪ Y, Y ) 7→(W,Y ) 7→ (W,W ∩ Y )

are both cofinal.

Proof. The left map is surjective, because if (U, V ) ∈ UA∪B,B then U ∈ UA, V ∈ UB, and (U, V ) =
(U ∪ V, V ).

To see that the right map is cofinal, start with (U, V ) ∈ UA,A∩B.

Note that A is disjoint from B ∩ (X − V ), so by normality, or compactness in a Hausdorff space,
there exist non-intersecting open sets S and T with A ⊆ S and B ∩ (X − V ) ⊆ T . Then take W =
U ∩S ∈ UA and Y = V ∪T ∈ UB, and observe thatW ∩Y = V ∩S and so (W,W ∩Y ) ⊆ (U, V ).

Proof of Theorem 35.3. Combine Lemma 35.8 with excision for singular cohomology:

lim−→(W,Y )∈UA×UB
Hp(W ∪ Y, Y )

∼= //

∼=
��

lim−→UA×UB H
p(W,W ∩ Y )

∼=
��

lim−→(U,V )∈UA∪B,B
Hp(U, V ) // lim−→(U,V )∈UA,A∩B

Hp(U, V )

Ȟp(A ∪B,B) // Ȟp(A,A ∩B)

The Mayer-Vietoris long exact sequence is a consequence of these two results.

Corollary 35.9 (Mayer-Vietoris). Suppose A and B are closed subsets of a normal space, or com-
pact subsets of a Hausdorff space. There is a natural long exact sequence:

· · · → Ȟp−1(A ∪B)→ Ȟp−1(A)⊕ Ȟp(B)→ Ȟp−1(A ∩B)→ Hp(A ∪B)→ · · · .
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Proof. Apply Lemma 11.6 to the ladder

· · · // Ȟp−1(A ∪B)

��

// Ȟp−1(B)

��

// Ȟp(A ∪B,B)

∼=
��

// Ȟp(A ∪B)

��

// Ȟp(B)

��

// · · ·

· · · // Ȟp−1(A) // Ȟp−1(A ∩B) // Ȟp(A,A ∩B) // Ȟp(A) // Ȟp(A ∩B) // · · · .

//

�� ��
//

// //

��

//

��

//

��

//

��
// // // // //
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