34 Cap product and "Cech" cohomology

We have a few more things to say about the cap product, and will then use it to give a statement of Poincaré duality.

Proposition 34.1. The cap product enjoys the following properties. (1) $(a \cup b) \cap x = a \cap (b \cap x)$ and $1 \cap x = x$: $H_*(X)$ is a module for $H^*(X)$. (2) Given a map $f : X \to Y$, $b \in H^p(Y)$, and $x \in H_n(X)$,

$$f_*(f^*(b) \cap x) = b \cap f_*(x).$$

(3) Let $\epsilon: H_*(X) \to R$ be the augmentation. Then

$$\varepsilon(b \cap x) = \langle b, x \rangle \,.$$

(4) Cap and cup are adjoint:

$$\langle a \cap b, x \rangle = \langle a, b \cap x \rangle.$$

Proof. (1) Easy.

(2) Let β be a cocycle representing b, and σ an n-simplex in X. Then

$$f_*(f^*(\beta) \cap \sigma) = f_*((f^*(\beta)(\sigma \circ \alpha_p)) \cdot (\sigma \circ \omega_q))$$

= $f_*(\beta(f \circ \sigma \circ \alpha_p) \cdot (\sigma \circ \omega))$
= $\beta(f \circ \sigma \circ \alpha_p) \cdot f_*(\sigma \circ \omega_q)$
= $\beta(f \circ \sigma \circ \alpha_p) \cdot (f \circ \sigma \circ \omega_q)$
= $\beta \cap f_*(\sigma)$

This formula goes by many names: the "projection formula," or "Frobenius reciprocity." (3) We get zero unless p = n. Again let $\sigma \in \text{Sin}_n(X)$, and compute:

$$\varepsilon(\beta \cap \sigma) = \varepsilon(\beta(\sigma) \cdot c^0_{\sigma(n)}) = \beta(\sigma)\varepsilon(c^0_{\sigma(n)}) = \beta(\sigma) = \langle \beta, \sigma \rangle .$$

Here now is a statement of Poincaré duality. It deals with the homological structure of compact topological manifolds. We recall the notion of an orientation, and Theorem 31.9 asserting the existence of a fundamental class $[M] \in H_n(M; R)$ in a compact *R*-oriented *n*-manifold.

Theorem 34.2 (Poincaré duality). Let M be a topological n-manifold that is compact and oriented with respect to a PID R. Then there is a unique class $[M] \in H_n(M; R)$ that restricts to the orientation class in $H_n(M, M - a; R)$ for every $a \in M$. It has the property that

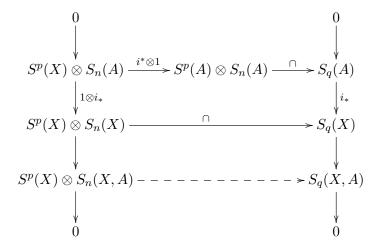
$$-\cap [M]: H^p(M; R) \to H_q(M; R), \quad p+q=n$$

is an isomorphism for all p.

You might want to go back to Lecture 25 and verify that $\mathbf{RP}^3 \times \mathbf{RP}^3$ satisfies this theorem.

Our proof of Poincaré duality will be by induction. In order to make the induction go we will prove a substantially more general theorem, one that involves relative homology and cohomology. So we begin by understanding how the cap product behaves in relative homology.

Suppose $A \subseteq X$ is a subspace. We have:



The left sequence is exact because $0 \to S_n(A) \to S_n(X) \to S_n(X, A) \to 0$ splits and tensoring with $S^p(X)$ (which is not free!) therefore leaves it exact. The solid arrow diagram commutes precisely by the chain-level projection formula. There is therefore a uniquely defined map on cokernels.

This chain map yields the *relative cap product*

$$\cap: H^p(X) \otimes H_n(X, A) \to H_q(X, A)$$

It renders $H_*(X, A)$ a module for the graded algebra $H^*(X)$.

I want to come back to an old question, about the significance of relative homology. Suppose that $K \subseteq X$ is a subspace, and consider the relative homology $H_*(X, X-K)$. Since the complement of X - K in X is K, these groups should be regarded as giving information about K. If I enlarge

K, I make X - K smaller: $K \subseteq L$ induces $H_*(X, X - L) \to H_*(X - K)$; the relative homology is *contravariant* in the variable K (regarded as an object of the poset of subspaces of X).

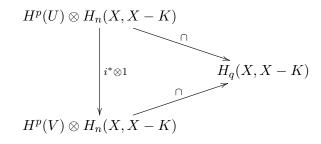
Excision gives insight into how $H_*(X, X - K)$ depends on K. Suppose $K \subseteq U \subseteq X$ with $\overline{K} \subseteq \text{Int}(U)$. To simplify things, let's just suppose that K is closed and U is open. Then X - U is closed, X - K is open, and $X - U \subseteq X - K$, so excision asserts that the inclusion map

$$H_*(U, U - K) \to H_*(X, X - K)$$

is an isomorphism.

The cap product puts some structure on $H_*(X, X - K)$: it's a module over $H^*(X)$. But we can do better! We just decided that $H_*(X, X - K) = H_*(U, U - K)$, so the $H^*(X)$ action factors through an action by $H^*(U)$, for any open set U containing K. How does this refined action change when I decrease U?

Lemma 34.3. Let $K \subseteq V \subseteq U \subseteq X$, with K closed and U, V open. Then:



commutes.

Proof. This is just the projection formula again!

Let \mathcal{U}_K be the set of open neighborhoods of K in X. It is partially ordered by reverse inclusion. This poset is directed, since the intersection of two opens is open. By the lemma, $H^p: \mathcal{U}_K \to \mathbf{Ab}$ is a directed system.

Definition 34.4. The *Cech cohomology* of K is

$$\check{H}^p(K) = \lim_{U \in \mathcal{U}_K} H^p(U).$$

I apologize for this bad notation; its possible dependence on the way K is sitting in X is not recorded. The maps in this directed system are all maps of graded algebras, so the direct limit is naturally a commutative graded algebra. Since tensor product commutes with direct limits, we now get a cap product pairing

$$\cap: \dot{H}^p(K) \otimes H_n(X, X - K) \to H_q(X, X - K)$$

satifying the expected properties. This is the best you can do. It's the natural structure that this relative homology has: $H_*(X, X - K)$ is a module over $\check{H}^*(K)$.

There are compatible restriction maps $H^p(U) \to H^p(K)$, so there is a natural map

$$\check{H}^*(K) \to H^*(K)$$
.

This map is often an isomorphism. Suppose $K \subseteq X$ satisfies the following "regular neighborhood" condition: For every open $U \supseteq K$, there exists an open V with $U \supseteq V \supseteq K$ such that $K \hookrightarrow V$ is a homotopy equivalence (or actually just a homology isomorphism).

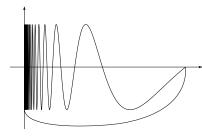
Lemma 34.5. Under these conditions, $\check{H}^*(K) \to H^*(K)$ is an isomorphism.

Proof. We will check that the map to $H^p(K)$ satisfies the conditions we established in Lecture 23 to be a direct limit.

So let $x \in H^p(K)$. Let U be a neighborood of K in X such that $H^p(U) \to H^p(K)$ is an isomorphism. Then indeed x is in the image of $H^p(U)$.

Then let U be a neighborhood of K and let $x \in H^p(U)$ restrict to 0 in $H^p(K)$. Let V be a sub-neighborood such that $H^p(V) \to H^p(K)$ is an isomorphism. Then x restricts to 0 in $H^p(V)$. \Box

On the other hand, here's an example that distinguishes \check{H}^* from H^* . This is a famous example. The "topologist's sine curve" is the subspace of \mathbb{R}^2 defined as follows. It is union of three subsets, A, B, and C. A is the graph of $\sin(\pi/x)$ where 0 < x < 1. B is the interval $0 \times [-1, 1]$. Cis a continuous curve from (0, -1) to (1, 0) and meeting $A \cup B$ only at its endpoints. This is a counterexample for a lot of things; you've probably seen it in 18.901.



What is the singular homology of the topologist's sine curve? Use Mayer-Vietoris! I can choose V to be some connected portion of the continuous curve from (0, -1) to (1, 0), and U to contain the rest of the space in a way that intersects V in two open intervals. Then V is contractible, and U is made up of two contractible connected components. (This space is not locally path connected, and one of these path components is not closed.)

The Mayer-Vietoris sequence looks like

$$0 \to H_1(X) \xrightarrow{o} H_0(U \cap V) \to H_0(U) \oplus H_0(V) \to H_0(X) \to 0$$

The two path components of $U \cap V$ do not become connected in U, so $\partial = 0$ and we find that $\varepsilon : H_*(X) \xrightarrow{\cong} H_*(*)$ and hence $H^*(X) \cong H^*(*)$.

How about \check{H}^* ? Let $X \subset U$ be an open neighborhood. The interval $0 \times [-1, 1]$ has an ϵ -neighborhood, for some small ϵ , that's contained in U. This implies that there exists a neighborhood $X \subseteq V \subseteq U$ such that $V \simeq S^1$. This implies that

$$\lim_{U \in \mathcal{U}_X} H^*(U) \cong H^*(S^1)$$

by a cofinality argument that we will detail later. So $\check{H}^*(X) \neq H^*(X)$.

Nevertheless, under quite general conditions the Čech cohomology of a compact Hausdorff space is a topological invariant. The Čech construction forms a limit over open covers of the cohomology of the nerve of the cover. It is a topological invariant by construction.

Theorem 34.6. Let X be a compact subset of some Euclidean space. If there is an open neighborhood of which it is a retract, then $\check{H}^*(X; R)$ is canonically isomorphic to the cohomology defined using the Čech construction, and is therefore independent of the embedding into Euclidean space.

See Dold's beautiful book [3] for this and other topics discussed in this chapter.

Bibliography

- M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293–297.
- [2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
- [3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
- [4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199–236.
- [5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
- [6] A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2002.
- [7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294–329.
- [8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337–341.
- J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549–557.
- [10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56–69.

MIT OpenCourseWare https://ocw.mit.edu

18.905 Algebraic Topology I Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.