34 Cap product and "Cech" cohomology

We have a few more things to say about the cap product, and will then use it to give a statement of Poincaré duality.

Proposition 34.1. The cap product enjoys the following properties.
(1) $(a \cup b) \cap x=a \cap(b \cap x)$ and $1 \cap x=x: H_{*}(X)$ is a module for $H^{*}(X)$.
(2) Given a map $f: X \rightarrow Y, b \in H^{p}(Y)$, and $x \in H_{n}(X)$,

$$
f_{*}\left(f^{*}(b) \cap x\right)=b \cap f_{*}(x) .
$$

(3) Let $\epsilon: H_{*}(X) \rightarrow R$ be the augmentation. Then

$$
\varepsilon(b \cap x)=\langle b, x\rangle .
$$

(4) Cap and cup are adjoint:

$$
\langle a \cap b, x\rangle=\langle a, b \cap x\rangle .
$$

Proof. (1) Easy.
(2) Let β be a cocycle representing b, and σ an n-simplex in X. Then

$$
\begin{aligned}
f_{*}\left(f^{*}(\beta) \cap \sigma\right) & =f_{*}\left(\left(f^{*}(\beta)\left(\sigma \circ \alpha_{p}\right)\right) \cdot\left(\sigma \circ \omega_{q}\right)\right) \\
& =f_{*}\left(\beta\left(f \circ \sigma \circ \alpha_{p}\right) \cdot(\sigma \circ \omega)\right) \\
& =\beta\left(f \circ \sigma \circ \alpha_{p}\right) \cdot f_{*}\left(\sigma \circ \omega_{q}\right) \\
& =\beta\left(f \circ \sigma \circ \alpha_{p}\right) \cdot\left(f \circ \sigma \circ \omega_{q}\right) \\
& =\beta \cap f_{*}(\sigma)
\end{aligned}
$$

This formula goes by many names: the "projection formula," or "Frobenius reciprocity."
(3) We get zero unless $p=n$. Again let $\sigma \in \operatorname{Sin}_{n}(X)$, and compute:

$$
\varepsilon(\beta \cap \sigma)=\varepsilon\left(\beta(\sigma) \cdot c_{\sigma(n)}^{0}\right)=\beta(\sigma) \varepsilon\left(c_{\sigma(n)}^{0}\right)=\beta(\sigma)=\langle\beta, \sigma\rangle .
$$

Here now is a statement of Poincaré duality. It deals with the homological structure of compact topological manifolds. We recall the notion of an orientation, and Theorem 31.9 asserting the existence of a fundamental class $[M] \in H_{n}(M ; R)$ in a compact R-oriented n-manifold.

Theorem 34.2 (Poincaré duality). Let M be a topological n-manifold that is compact and oriented with respect to a PID R. Then there is a unique class $[M] \in H_{n}(M ; R)$ that restricts to the orientation class in $H_{n}(M, M-a ; R)$ for every $a \in M$. It has the property that

$$
-\cap[M]: H^{p}(M ; R) \rightarrow H_{q}(M ; R), \quad p+q=n,
$$

is an isomorphism for all p.
You might want to go back to Lecture 25 and verify that $\mathbf{R P}^{3} \times \mathbf{R P}^{3}$ satisfies this theorem.
Our proof of Poincaré duality will be by induction. In order to make the induction go we will prove a substantially more general theorem, one that involves relative homology and cohomology. So we begin by understanding how the cap product behaves in relative homology.

Suppose $A \subseteq X$ is a subspace. We have:

The left sequence is exact because $0 \rightarrow S_{n}(A) \rightarrow S_{n}(X) \rightarrow S_{n}(X, A) \rightarrow 0$ splits and tensoring with $S^{p}(X)$ (which is not free!) therefore leaves it exact. The solid arrow diagram commutes precisely by the chain-level projection formula. There is therefore a uniquely defined map on cokernels.

This chain map yields the relative cap product

$$
\cap: H^{p}(X) \otimes H_{n}(X, A) \rightarrow H_{q}(X, A)
$$

It renders $H_{*}(X, A)$ a module for the graded algebra $H^{*}(X)$.
I want to come back to an old question, about the significance of relative homology. Suppose that $K \subseteq X$ is a subspace, and consider the relative homology $H_{*}(X, X-K)$. Since the complement of $X-K$ in X is K, these groups should be regarded as giving information about K. If I enlarge
K, I make $X-K$ smaller: $K \subseteq L$ induces $H_{*}(X, X-L) \rightarrow H_{*}(X-K)$; the relative homology is contravariant in the variable K (regarded as an object of the poset of subspaces of X).

Excision gives insight into how $H_{*}(X, X-K)$ depends on K. Suppose $K \subseteq U \subseteq X$ with $\bar{K} \subseteq \operatorname{Int}(U)$. To simplify things, let's just suppose that K is closed and U is open. Then $X-U$ is closed, $X-K$ is open, and $X-U \subseteq X-K$, so excision asserts that the inclusion map

$$
H_{*}(U, U-K) \rightarrow H_{*}(X, X-K)
$$

is an isomorphism.
The cap product puts some structure on $H_{*}(X, X-K)$: it's a module over $H^{*}(X)$. But we can do better! We just decided that $H_{*}(X, X-K)=H_{*}(U, U-K)$, so the $H^{*}(X)$ action factors through an action by $H^{*}(U)$, for any open set U containing K. How does this refined action change when I decrease U ?

Lemma 34.3. Let $K \subseteq V \subseteq U \subseteq X$, with K closed and U, V open. Then:

commutes.
Proof. This is just the projection formula again!
Let \mathcal{U}_{K} be the set of open neighborhoods of K in X. It is partially ordered by reverse inclusion. This poset is directed, since the intersection of two opens is open. By the lemma, $H^{p}: \mathcal{U}_{K} \rightarrow \mathbf{A b}$ is a directed system.

Definition 34.4. The Čech cohomology of K is

$$
\check{H}^{p}(K)={\underset{U \overrightarrow{\mathcal{U}}}{K}}^{\lim ^{p}(U) .}
$$

I apologize for this bad notation; its possible dependence on the way K is sitting in X is not recorded. The maps in this directed systen are all maps of graded algebras, so the direct limit is naturally a commutative graded algebra. Since tensor product commutes with direct limits, we now get a cap product pairing

$$
\cap: \check{H}^{p}(K) \otimes H_{n}(X, X-K) \rightarrow H_{q}(X, X-K)
$$

satifying the expected properties. This is the best you can do. It's the natural structure that this relative homology has: $H_{*}(X, X-K)$ is a module over $\check{H}^{*}(K)$.

There are compatible restriction maps $H^{p}(U) \rightarrow H^{p}(K)$, so there is a natural map

$$
\check{H}^{*}(K) \rightarrow H^{*}(K) .
$$

This map is often an isomorphism. Suppose $K \subseteq X$ satisfies the following "regular neighborhood" condition: For every open $U \supseteq K$, there exists an open V with $U \supseteq V \supseteq K$ such that $K \hookrightarrow V$ is a homotopy equivalence (or actually just a homology isomorphism).

Lemma 34.5. Under these conditions, $\check{H}^{*}(K) \rightarrow H^{*}(K)$ is an isomorphism.
Proof. We will check that the map to $H^{p}(K)$ satisfies the conditions we established in Lecture 23 to be a direct limit.

So let $x \in H^{p}(K)$. Let U be a neighborood of K in X such that $H^{p}(U) \rightarrow H^{p}(K)$ is an isomorphism. Then indeed x is in the image of $H^{p}(U)$.

Then let U be a neighborhood of K and let $x \in H^{p}(U)$ restrict to 0 in $H^{p}(K)$. Let V be a sub-neighborood such that $H^{p}(V) \rightarrow H^{p}(K)$ is an isomorphism. Then x restricts to 0 in $H^{p}(V)$.

On the other hand, here's an example that distinguishes \breve{H}^{*} from H^{*}. This is a famous example. The "topologist's sine curve" is the subspace of \mathbf{R}^{2} defined as follows. It is union of three subsets, A, B, and $C . A$ is the graph of $\sin (\pi / x)$ where $0<x<1 . B$ is the interval $0 \times[-1,1]$. C is a continuous curve from $(0,-1)$ to $(1,0)$ and meeting $A \cup B$ only at its endpoints. This is a counterexample for a lot of things; you've probably seen it in 18.901.

What is the singular homology of the topologist's sine curve? Use Mayer-Vietoris! I can choose V to be some connected portion of the continuous curve from $(0,-1)$ to $(1,0)$, and U to contain the rest of the space in a way that intersects V in two open intervals. Then V is contractible, and U is made up of two contractible connected components. (This space is not locally path connected, and one of these path components is not closed.)

The Mayer-Vietoris sequence looks like

$$
0 \rightarrow H_{1}(X) \xrightarrow{\partial} H_{0}(U \cap V) \rightarrow H_{0}(U) \oplus H_{0}(V) \rightarrow H_{0}(X) \rightarrow 0 .
$$

The two path components of $U \cap V$ do not become connected in U, so $\partial=0$ and we find that $\varepsilon: H_{*}(X) \stackrel{\cong}{\leftrightarrows} H_{*}(*)$ and hence $H^{*}(X) \cong H^{*}(*)$.

How about \breve{H}^{*} ? Let $X \subset U$ be an open neighborhood. The interval $0 \times[-1,1]$ has an ϵ neighborhood, for some small ϵ, that's contained in U. This implies that there exists a neighborhood $X \subseteq V \subseteq U$ such that $V \simeq S^{1}$. This implies that

$$
{\underset{U \in \mathcal{U}_{X}}{\lim _{x}}} H^{*}(U) \cong H^{*}\left(S^{1}\right)
$$

by a cofinality argument that we will detail later. So $\check{H}^{*}(X) \neq H^{*}(X)$.
Nevertheless, under quite general conditions the Čech cohomology of a compact Hausdorff space is a topological invariant. The Čech construction forms a limit over open covers of the cohomology of the nerve of the cover. It is a topological invariant by construction.

Theorem 34.6. Let X be a compact subset of some Euclidean space. If there is an open neighborhood of which it is a retract, then $\check{H}^{*}(X ; R)$ is canonically isomorphic to the cohomology defined using the Cech construction, and is therefore independent of the embedding into Euclidean space.

See Dold's beautiful book [3] for this and other topics discussed in this chapter.

Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293-297.
[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199-236.
[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337-341.
[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549-557.
[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56-69.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

