32 Proof of the orientation theorem

We are studying the way in which local homological information gives rise to global information, especially on an n-manifold M. The tool was the map

$$
j: H_{n}(M ; R) \rightarrow \Gamma\left(M ; o_{M} \otimes R\right)
$$

sending a class c to the section of the orientation local coefficient system given at $x \in M$ by the restriction $j_{x}(c) \in H_{n}(M, M-x)$. We asserted that if M is compact then j is an isomorphism and that $H_{q}(M)=0$ for $q>n$. The proof will be by induction.

To make the induction go, we will need a refinement of this construction. Let $A \subseteq M$ be a compact subset. A class in $H_{n}(M, M-A)$ is represented by a cycle whose boundary lies outside of A. It may cover A evenly. We can give meaning to this question as follows. Let $x \in A$. Then $M-A \subseteq M-x$, so we have a map

$$
j_{A, x}: H_{n}(M, M-A) \rightarrow H_{n}(M, M-x)
$$

that tests whether the chain covers x. As x ranges over A, these maps together give us a map to the group of sections of o_{M} over A,

$$
j_{A}: H_{n}(M, M-A) \rightarrow \Gamma\left(A ; o_{M}\right)
$$

Because $H_{n}(M, M-A)$ deals with homology classes that "stretch over A," we will write

$$
H_{n}(M, M-A)=H_{n}(M \mid A) .
$$

Theorem 32.1. Let M be an n-manifold and let A be a compact subset of M. Then $H_{q}(M \mid A ; R)=0$ for $q>n$, and the map $j_{A}: H_{n}(M \mid A ; R) \rightarrow \Gamma\left(A ; o_{M} \otimes R\right)$ is an isomorphism.

Taking $A=M$ (assuming M compact) we find that $H_{q}(M ; R)=0$ for $q>n$ and

$$
j_{M}: H_{n}(M ; R) \xrightarrow{\cong} \Gamma\left(M ; o_{M} \otimes R\right) .
$$

But the theorem covers much more exotic situations as well; perhaps A is a Cantor set in some Euclidean space, for example.

We follow [2] in proving this, and refer you to that reference for the modifications appropriate for the more general statement when A is assumed merely closed rather than compact.

First we establish two general results.
Proposition 32.2. Let A and B be closed subspaces of M, and suppose the result holds for A, B, and $A \cap B$. Then it holds for $A \cup B$.

Proof. The relative Mayer-Vietoris theorem and the hypothesis that $H_{n+1}(M \mid A \cap B)=0$ gives us exactness of the top row in the ladder

Exactness of the bottom row is clear: A section over $A \cup B$ is precisely a section over A and a section over B that agree on the intersection. So the five-lemma shows that $j_{A \cup B}$ is an isomorphism. Looking further back in the Mayer-Vietoris sequence gives the vanishing of $H_{q}(M \mid A)$ for $q>n$.

Proposition 32.3. Let $A_{1} \supseteq A_{2} \supseteq \cdots$ be a decreasing sequence of compact subsets of M, and assume that the theorem holds for each A_{n}. Then it holds for the intersection $A=\bigcap A_{i}$.

The proof of this proposition entails two lemmas, which we'll dispose of first.
Lemma 32.4. Let $A_{1} \supseteq A_{2} \supseteq \cdots$ be a decreasing sequence of compact subsets of a space X, with intersection A. Then

Proof. Let $\sigma: \Delta^{q} \rightarrow X$ be any q-simplex in $X-A$. The subsets $X-A_{i}$ form an open cover of $\operatorname{im}(\sigma)$, so by compactness it lies in some single $X-A_{i}$. This shows that

$$
\underset{i}{\lim } S_{q}\left(X-A_{i}\right) \xrightarrow{\cong} S_{q}(X-A) .
$$

Thus

$$
\underset{i}{\lim } S_{q}\left(X \mid A_{i}\right) \xrightarrow{\cong} S_{q}\left(X \mid A_{i}\right)
$$

by exactness of direct limit, and the claim then follows for the same reason.
Lemma 32.5. Let $A_{1} \supseteq A_{2} \supseteq \cdots$ be a decreasing sequence of compact subsets in a Hausdorff space X with intersection A. For any open neighborhood U of A there exists i such that $A_{i} \subseteq U$.

Proof. A is compact, being a closed subset of the compact Hausdorff space A_{1}. Since A is the intersection of the A_{i}, and $A \subseteq U$, the intersection of the decreasing sequence of compact sets $A_{i}-U$ is empty. Thus by the finite intersection property one of them must be empty; but that says that $A_{i} \subseteq U$.

Proof of Proposition 32.3. By Lemma 32.4, $H_{q}(M \mid A)=0$ for $q>n$. In dimension n, we contemplate the commutative diagram

The top map an isomorphism by Lemma 32.4 .
To see that the bottom map is an isomorphism, we'll verify the two conditions for a map to be a direct limit from Lecture 23. First let x be a section of o_{M} over A. By compactness, we may cover A by a finite set of opens over each of which o_{M} is trivial. The section extends over their union U, by unique path lifting. By Lemma 32.5 this open set contains some A_{i}, and we conclude that any section over A extends to some A_{i}.

On the other hand, suppose that a section $x \in \Gamma\left(A_{i} ; o_{M}\right)$ vanishes on A. Then it vanishes on some open set containing A, again by unique path lifting and local triviality. Some A_{j} lies in that open set, again by Lemma 32.5. We may assume that $j \geq i$, and conclude that x already vanishes on A_{j}.

Proof of Theorem 32.1. There are five steps. In describing them, we will call a subset of M "Euclidean" if it lies inside some open set homeomorphic to \mathbf{R}^{n}.
(1) $M=\mathbf{R}^{n}, A$ a compact convex subset.
(2) $M=\mathbf{R}^{n}$, A a finite union of compact convex subsets.
(3) $M=\mathbf{R}^{n}$, A any compact subset.
(4) M arbitrary, A a finite union of compact Euclidean subsets.
(5) M arbitrary, A an arbitrary compact subset.

Notes on the proofs: (1) To be clear, "convex" implies nonempty. By translating A, we may assume that $0 \in A$. The compact subset A lies in some disk, and by a homothety we may assume that the disk is the unit disk D^{n}. Then we claim that the inclusion $i: S^{n-1} \rightarrow \mathbf{R}^{n}-A$ is a deformation retract. A retraction is given by $r(x)=x /\|x\|$, and a homotopy from $i r$ to the identity is given by

$$
h(x, t)=\left(t+\frac{1-t}{\|x\|}\right) x .
$$

It follows that $H_{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-A\right) \cong H_{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D^{n}\right)$ for all q. This group is zero for $q>n$. In dimension n, note that restricting to the origin gives an isomorphism $H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D^{n}\right) \rightarrow$ $H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right)$ since $\mathbf{R}^{n}-D$ is a deformation retract of $\mathbf{R}^{n}-0$. The local system $o_{\mathbf{R}^{n}}$ is trivial, since \mathbf{R}^{n} is simply connected, so restricting to the origin gives an isomorphism $\Gamma\left(D^{n}, o_{\mathbf{R}^{n}}\right) \rightarrow$ $H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-0\right)$. This implies that $j_{D^{n}}: H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-D^{n}\right) \rightarrow \Gamma\left(D^{n}, o_{\mathbf{R}^{n}}\right)$ is an isomorphism. The restriction $\Gamma\left(D^{n}, o_{\mathbf{R}^{n}}\right) \rightarrow \Gamma\left(A, o_{\mathbf{R}^{n}}\right)$ is also an isomorphism, since $A \rightarrow D^{n}$ is a deformation retract. So by the commutative diagram

we find that $j_{A}: H_{n}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-A\right) \rightarrow \Gamma\left(A ; o_{\mathbf{R}^{n}}\right)$ is an isomorphism.
(2) by Proposition 32.2 .
(3) For each $j \geq 1$, let C_{j} be a finite subset of A such that

$$
A \subseteq \bigcup_{x \in C_{j}} B_{1 / j}(x)
$$

Since any intersection of convex sets is either empty or convex,

$$
A_{k}=\bigcap_{j=1}^{k} \bigcup_{x \in C_{j}} B_{1 / j}(x)
$$

is a union of finitely many convex sets, and since A is closed it is the intersection of this decreasing family. So the result follows from (1), (2), and Proposition 32.3 .
(4) by (3) and (2).
(5) Cover A by finitely many open subsets that embed in Euclidean opens as open disks with compact closures. Their closures then form a finite cover by closed Euclidean disks D_{i} in Euclidean opens U_{i}. For each i, excise the closed subset $M-U_{i}$ to see that

$$
H_{q}\left(M, M-A \cap D_{i}\right) \cong H_{q}\left(U_{i}, U_{i}-A \cap D_{i}\right) \cong H_{q}\left(\mathbf{R}^{n}, \mathbf{R}^{n}-A \cap D_{i}\right)
$$

By (4), the theorem holds for each of these. Each intersection $\left(A \cap D_{i}\right) \cap\left(A \cap D_{j}\right)$ is again a compact Euclidean subset, so the result holds for them by excision as well. The result then follows by (1).

Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293-297.
[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199-236.
[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337-341.
[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549-557.
[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56-69.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

