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32 Proof of the orientation theorem

We are studying the way in which local homological information gives rise to global information,
especially on an n-manifold M . The tool was the map

j : Hn(M ;R)→ Γ(M ; oM ⊗R)

sending a class c to the section of the orientation local coefficient system given at x ∈ M by the
restriction jx(c) ∈ Hn(M,M − x). We asserted that if M is compact then j is an isomorphism and
that Hq(M) = 0 for q > n. The proof will be by induction.

To make the induction go, we will need a refinement of this construction. Let A ⊆ M be a
compact subset. A class in Hn(M,M − A) is represented by a cycle whose boundary lies outside
of A. It may cover A evenly. We can give meaning to this question as follows. Let x ∈ A. Then
M −A ⊆M − x, so we have a map

jA,x : Hn(M,M −A)→ Hn(M,M − x)

that tests whether the chain covers x. As x ranges over A, these maps together give us a map to
the group of sections of oM over A,

jA : Hn(M,M −A)→ Γ(A; oM ) .

Because Hn(M,M −A) deals with homology classes that “stretch over A,” we will write

Hn(M,M −A) = Hn(M |A) .

Theorem 32.1. LetM be an n-manifold and let A be a compact subset ofM . Then Hq(M |A;R) = 0
for q > n, and the map jA : Hn(M |A;R)→ Γ(A; oM ⊗R) is an isomorphism.

Taking A = M (assuming M compact) we find that Hq(M ;R) = 0 for q > n and

∼=
jM : Hn(M ; R) −→ Γ(M ; oM ⊗ R) .

But the theorem covers much more exotic situations as well; perhaps A is a Cantor set in some 
Euclidean space, for example.

We follow [2] in proving this, and refer you to that reference for the modifications appropriate for 
the more general statement when A is assumed merely closed rather than compact.

First we establish two general results.

Proposition 32.2. Let A and B be closed subspaces of M , and suppose the result holds for A, B, 
and A ∩ B. Then it holds for A ∪ B.

Proof. The relative Mayer-Vietoris theorem and the hypothesis that Hn+1(M |A ∩ B) = 0 gives us 
exactness of the top row in the ladder

0 // Hn(M |A ∪B)

jA∩B
��

// Hn(M |A)⊕Hn(M |B)

jA⊕jB
��

// Hn(M |A ∩B)

jA∩B
��

0 // Γ(A ∪B; oM ) // Γ(A; oM )⊕ Γ(B; oM ) // Γ(A ∩B; oM ) .

Exactness of the bottom row is clear: A section over A ∪ B is precisely a section over A and a
section over B that agree on the intersection. So the five-lemma shows that jA∪B is an isomorphism.
Looking further back in the Mayer-Vietoris sequence gives the vanishing of Hq(M |A) for q > n.
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Proposition 32.3. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets of M , and
assume that the theorem holds for each An. Then it holds for the intersection A =

⋂
Ai.

The proof of this proposition entails two lemmas, which we’ll dispose of first.

Lemma 32.4. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets of a space X, with
intersection A. Then

lim−→
i

Hq(X,X −Ai)
∼=−→ Hq(X,X −A) .

Proof. Let σ : ∆q → X be any q-simplex in X − A. The subsets X − Ai form an open cover of
im(σ), so by compactness it lies in some single X −Ai. This shows that

lim−→
i

Sq(X −Ai)
∼=−→ Sq(X −A) .

Thus
lim−→
i

Sq(X|Ai)
∼=−→ Sq(X|Ai)

by exactness of direct limit, and the claim then follows for the same reason.

Lemma 32.5. Let A1 ⊇ A2 ⊇ · · · be a decreasing sequence of compact subsets in a Hausdorff space
X with intersection A. For any open neighborhood U of A there exists i such that Ai ⊆ U .

Proof. A is compact, being a closed subset of the compact Hausdorff space A1. Since A is the
intersection of the Ai, and A ⊆ U , the intersection of the decreasing sequence of compact sets
Ai−U is empty. Thus by the finite intersection property one of them must be empty; but that says
that Ai ⊆ U .

Proof of Proposition 32.3. By Lemma 32.4, Hq(M |A) = 0 for q > n. In dimension n, we contem-
plate the commutative diagram

lim−→
i

Hn(M |Ai)
∼= //

∼=

��

Hn(M |A)

��
lim−→
i

Γ(Ai; oM )
∼= // Γ(A; oM ) .

The top map an isomorphism by Lemma 32.4.
To see that the bottom map is an isomorphism, we’ll verify the two conditions for a map to be a

direct limit from Lecture 23. First let x be a section of oM over A. By compactness, we may cover
A by a finite set of opens over each of which oM is trivial. The section extends over their union U ,
by unique path lifting. By Lemma 32.5 this open set contains some Ai, and we conclude that any
section over A extends to some Ai.

On the other hand, suppose that a section x ∈ Γ(Ai; oM ) vanishes on A. Then it vanishes on
some open set containing A, again by unique path lifting and local triviality. Some Aj lies in that
open set, again by Lemma 32.5. We may assume that j ≥ i, and conclude that x already vanishes
on Aj .
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Proof of Theorem 32.1. There are five steps. In describing them, we will call a subset of M “Eu-
clidean” if it lies inside some open set homeomorphic to Rn.
(1) M = Rn, A a compact convex subset.
(2) M = Rn, A a finite union of compact convex subsets.
(3) M = Rn, A any compact subset.
(4) M arbitrary, A a finite union of compact Euclidean subsets.
(5) M arbitrary, A an arbitrary compact subset.

Notes on the proofs: (1) To be clear, “convex” implies nonempty. By translating A, we may
assume that 0 ∈ A. The compact subset A lies in some disk, and by a homothety we may assume
that the disk is the unit disk Dn. Then we claim that the inclusion i : Sn−1 → Rn − A is a
deformation retract. A retraction is given by r(x) = x/||x||, and a homotopy from ir to the identity
is given by

h(x, t) =

(
t+

1− t
||x||

)
x .

It follows that Hq(R
n,Rn − A) ∼= Hq(R

n,Rn − Dn) for all q. This group is zero for q > n.
In dimension n, note that restricting to the origin gives an isomorphism Hn(Rn,Rn − Dn) →
Hn(Rn,Rn − 0) since Rn −D is a deformation retract of Rn − 0. The local system oRn is trivial,
since Rn is simply connected, so restricting to the origin gives an isomorphism Γ(Dn, oRn) →
Hn(Rn,Rn − 0). This implies that jDn : Hn(Rn,Rn −Dn)→ Γ(Dn, oRn) is an isomorphism. The
restriction Γ(Dn, oRn)→ Γ(A, oRn) is also an isomorphism, since A→ Dn is a deformation retract.
So by the commutative diagram

Hn(Rn,Rn −Dn)
∼= //

jDn

��

Hn(Rn,Rn −A)

jA
��

Γ(Dn, oRn) // Γ(A, oRn)

we find that jA : Hn(Rn,Rn −A)→ Γ(A; oRn) is an isomorphism.
(2) by Proposition 32.2.
(3) For each j ≥ 1, let Cj be a finite subset of A such that

A ⊆
⋃
x∈Cj

B1/j(x) .

Since any intersection of convex sets is either empty or convex,

Ak =

k⋂
j=1

⋃
x∈Cj

B1/j(x)

is a union of finitely many convex sets, and since A is closed it is the intersection of this decreasing
family. So the result follows from (1), (2), and Proposition 32.3.

(4) by (3) and (2).
(5) Cover A by finitely many open subsets that embed in Euclidean opens as open disks with

compact closures. Their closures then form a finite cover by closed Euclidean disks Di in Euclidean
opens Ui. For each i, excise the closed subset M − Ui to see that

Hq(M,M −A ∩Di) ∼= Hq(Ui, Ui −A ∩Di) ∼= Hq(R
n,Rn −A ∩Di) .

By (4), the theorem holds for each of these. Each intersection (A∩Di)∩(A∩Dj) is again a compact
Euclidean subset, so the result holds for them by excision as well. The result then follows by (1).
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