
where αp : ∆p → ∆p+q sends i to i for 0 ≤ i ≤ p and ωq : ∆q → ∆p+q sends j to j+p for 0 ≤ j ≤ q.
This is a cochain map; it induces a “cross product” Hp(X) ⊗ Hq(Y ) → Hp+q(X × Y ), and, by
composing with the map induced by the diagonal embedding, the “cup product”

∪ : Hp(X)⊗Hq(X)→ Hp+q(X) .

We formalize the structure that this product imposes on cohomology.

Definition 29.1. Let R be a commutative ring. A graded R-algebra is a graded R-module
. . . , A−1, A0, A1, A2, . . . equipped with maps Ap ⊗R Aq → Ap+q and a map η : R → A0 that
make the following diagram commute.

Ap ⊗R R
1⊗η //

=

&&

Ap ⊗R A0

��

A0 ⊗R Aq

��

R⊗R Aq
η⊗1oo

=

xx
Ap Aq

Ap ⊗R (Aq ⊗R Ar) //

��

Ap ⊗R Aq+r

��
Ap+q ⊗R Ar // Ap+q+r

A graded R-algebra A is commutative if the following diagram commutes:

Ap ⊗R Aq τ //

%%

Aq ⊗R Ap

yy
Ap+q

where τ(x⊗ y) = (−1)pqy ⊗ x.

We claim that H∗(X;R) forms a commutative graded R-algebra under the cup product. This
is nontrivial. On the cochain level, this is clearly not graded commutative. We’re going to have to
work hard – in fact, so hard that you’re going to do it for homework. What needs to be checked is
that the following diagram commutes up to natural chain homotopy.

S∗(X × Y )
T∗ //

αX,Y

��

S∗(Y ×X)

αY,X

��
S∗(X)⊗R S∗(Y )

τ // S∗(Y )⊗R S∗(X)

Acyclic models helps us prove things like this.
You might hope that there is some way to produce a commutative product on a chain complex

modeling H∗(X). With coefficients in Q, this is possible, by a construction due to Dennis Sullivan.
With coefficients in a field of nonzero characteristic, it is not possible. Steenrod operations provide
the obstruction.

My goal now is to compute the cohomology algebras of some spaces. Some spaces are easy!
There is no choice for the product structure on H∗(Sn), for example. (When n = 0, we get a free
module of rank 2 in dimension 0. This admits a variety of commutative algebra structures; but we

29 Cup product, continued

We have constructed an explicit map Sp(X)⊗ Sq(Y ) −×→ Sp+q(Y ) via:

(f × g)(σ) = (−1)pqf(σ1 ◦ αp)g(σ2 ◦ ωq)
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have already seen that H0(S0) = Z × Z as an algebra.) Maybe the next thing to try is a product
of spheres. More generally, we should ask whether there is an algebra structure on H∗(X)⊗H∗(Y )
making the cross product an algebra map. If A and B are two graded algebras, there is a natural
algebra structure on A⊗B, given by 1 = 1⊗ 1 and

(a′ ⊗ b′)(a⊗ b) = (−1)|b
′|·|a|a′a⊗ b′b .

If A and B are commutative, then so is A⊗B with this algebra structure.

Proposition 29.2. The cohomology cross product

× : H∗(X)⊗H∗(Y )→ H∗(X × Y )

is an R-algebra homomorphism.

Proof. I have diagonal maps ∆X : X → X × X and ∆Y : Y → Y × Y . The diagonal on X × Y
factors as

X × Y
∆X×Y //

∆X×∆Y

((

X × Y ×X × Y

X ×X × Y × Y .

1×T×1
55

Let α1, α2 ∈ H∗(X) and β1, β2 ∈ H∗(Y ). Then α1 × β1, α2 × β2 ∈ H∗(X × Y ), and I want to
calculate (α1 × β1) ∪ (α2 × β2). Let’s see:

(α1 × β1) ∪ (α2 × β2) = ∆∗X×Y (α1 × β1 × α2 × β2)

= (∆X ×∆Y )∗(1× T × 1)∗(α1 × β1 × α2 × β2)

= (∆X ×∆Y )∗(α1 × T ∗(β1 × α2)× β2)

= (−1)|α2|·|β1|(∆X ×∆Y )∗(α1 × α2 × β1 × β2) .

Naturality of the cross product asserts that the diagram

H∗(X × Y ) H∗(X)⊗R H∗(Y )
×X×Yoo

H∗(X ×X × Y × Y )

(∆X×∆Y )∗

OO

H∗(X ×X)⊗H∗(Y × Y ) .
×X×X,Y×Yoo

∆∗X⊗∆∗Y

OO

commute. We learn:

(α1 × β1) ∪ (α2 × β2) = (−1)|α2|·|β1|(∆X ×∆Y )∗(α1 × α2 × β1 × β2)

= (−1)|α2|·|β1|(α1 ∪ α2)× (β1 ∪ β2) .

That’s exactly what we wanted.

We will see later, in Theorem 33.3, that the cross product map is often an isomorphism.

Example 29.3. How about H∗(Sp×Sq)? I’ll assume that p and q are both positive, and leave the
other cases to you. The Künneth theorem guarantees that × : H∗(Sp) ⊗H∗(Sq) → H∗(Sp × Sq)
is an isomorphism. Write α for a generator of Sp and β for a generator of Sq; and use the same
notations for the pullbacks of these elements to Sp × Sq under the projections. Then

H∗(Sp × Sq) = Z〈1, α, β, α ∪ β〉 ,
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and
α2 = 0 , β2 = 0 , αβ = (−1)pqβα .

This calculation is useful!

Corollary 29.4. Let p, q > 0. Any map Sp+q → Sp × Sq induces the zero map in Hp+q(−).

Proof. Let f : Sp+q → Sp × Sq be such a map. It induces an algebra map f∗ : H∗(Sp × Sq) →
H∗(Sp+q). This map must kill α and β, for degree reasons. But then it also kills their product,
since f∗ is multiplicative.

The space Sp ∨ Sq ∨ Sp+q has the same homology and cohomology groups as Sp × Sq. Both
are built as CW complexes with cells in dimensions 0, p, q, and p + q. But they are not homotopy
equivalent. We can see this now because there is a map Sp+q → Sp ∨ Sq ∨ Sp+q inducing an
isomorphism in Hp+q(−), namely, the inclusion of that summand.

30 Surfaces and nondegenerate symmetric bilinear forms

We are aiming towards a proof of a fundamental cohomological property of manifolds.

Definition 30.1. A (topological) manifold is a Hausdorff space such that every point has an open
neighborhood that is homeomorphic to some (finite dimensional) Euclidean space.

If all these Euclidean spaces can be chosen to be Rn, we have an n-manifold.
In this lecture we will state a case of the Poincaré duality theorem and study some consequences

of it, especially for compact 2-manifolds. This whole lecture will be happening with coefficients in
F2.

Theorem 30.2. Let M be a compact manifold of dimension n. There exists a unique class [M ] ∈
Hn(M), called the fundamental class, such that for every p, q with p+ q = n the pairing

Hp(M)⊗Hq(M)
∪−→ Hn(M)

〈−,[M ]〉−−−−−→ F2

is perfect.
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