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23 Hom and Lim

We will now develop more properties of the tensor product: its relationship to homomorphisms and 
to direct limits.

The tensor product arose in our study of bilinear maps. Even more natural are linear maps. 
Given a commutative ring R and two R-modules M and N , we can think about the collection of 
all R-linear maps from M to N . Not only does this set form an abelian group (under pointwise 
addition of homomorphisms); it forms an R-module, with

(rf)(y) = f(ry) = rf(y) , r ∈ R, y ∈ M .

The check that this is again an R-module homomorphism uses commutativity of R. We will write 
HomR(M, N), or just Hom(M, N), for this R-module.

Since Hom(M, N) is an R-module, we are entitled to think about what an R-module homomor-
phism into it is. Given

f : L → Hom(M, N)

we can define a new function

f̂  : L × M → N , f̂(x, y) = (f(x))(y) ∈ N .

You should check that this new function f̂  is R-bilinear! So we get a natural map

Hom(L, Hom(M, N)) → Hom(L ⊗ M, N) .

Conversely, given a map f̂  : L ⊗ M → N and x ∈ L, we can define f(x) : M → N by the same 
formula. These are inverse operations, so:

Lemma 23.1. The natural map Hom(L, Hom(M, N)) → Hom(L ⊗ M, N) is an isomorphism.

One says that ⊗ and Hom are adjoint, a word suggested by Sammy Eilenberg to Dan Kan, who 
first formulated this relationship between functors [7].

The second thing we will discuss is a generalization of one perspective on how the rational 
numbers are constructed from the integers – by a limit process: there are compatible maps in the 
diagram

Z
2 //

1
��

Z
3 //

1/2
��

Z
4 //

1/3!
��

Z
5 //

1/4!
��

· · ·

Q
= // Q

= // Q
= // Q

= // · · ·

and Q is the “universal,” or “initial,” abelian group you can map to.
We will formalize this process, using partially ordered sets as indexing sets. Recall from Lecture

3 that a partially ordered set, or poset, is a small category I such that #I(i, j) ≤ 1 and the only
isomorphisms are the identity maps. We will be interested in a particular class of posets.

Definition 23.2. A poset (I,≤) is directed if for every i, j ∈ I there exists k ∈ I such that i ≤ k
and j ≤ k.

Example 23.3. This is a very common condition. A first example is the natural numbers N with
≤ as the order. Another example is the positive natural numbers, with i ≤ j if i|j. This is because
i, j|(ij). A topological example: if X is a space, A a subspace, and I is the set of open subsets of
X containing A, directed by saying that U ≤ V if U ⊇ V . This is because an intersection of two
opens is again open.
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Definition 23.4. Let I be a directed set. An I-directed system in a category C is a functor I → C.
This means that for every i ∈ I we are given an object Xi ∈ C, and for every i ≤ j we are given a
map fi,j : Xi → Xj , in such a way that fi,i = 1Xi and if i ≤ j ≤ k then fi,k = fj,k ◦ fi,j : Xi → Xk.

Example 23.5. If I = (N,≤), then you get a “linear system” X0
f01−−→ X1

f12−−→ X2 → · · · .

Example 23.6. Suppose I = (N>0, |), i.e., the second example above. You can consider I → Ab,

say assigning to each i the integers Z, and fij : Z
j/i−−→ Z.

These directed systems can be a little complicated. But there’s a simple one, namely the constant
one.

Example 23.7. Let I be any directed system. Any object A ∈ C determines an I-directed set,
namely the constant functor cA : I → C.

Not every directed system is constant, but we can try to find a best approximating constant
system. To compare systems, we need morphisms. I-directed systems in C are functors I → C.
They are related by natural transformations, and those are the morphisms in the category of I-
directed systems. That is to say, a morphism is a choice of map gi : Xi → Yi, for each i ∈ I, such
that

Xi
//

gi

��

Xj

gj

��
Yi // Yj

commutes for all i ≤ j.

Definition 23.8. Let X : I → C be a directed system. A direct limit is an object L and a map
X → cL that is initial among maps to constant systems. This means that given any other map to
a constant system, say X → cA, there is a unique map f : L→ A such that

cL

cf

��
X

77

''
cA

commutes.

This is a “universal property.” So two different direct limits are canonically isomorphic; but a
directed system may fail to have a direct limit. For example, the linear directed systems we used
to create the rational numbers exists in the category of finitely generated abelian groups; but Q is
not finitely generated, and there’s no finitely generated group that will serve as a direct limit of this
system in the category of finitely generated abelian groups.

Example 23.9. Suppose we have an increasing sequence of subspaces, X0 ⊆ X1 ⊆ · · · ⊆ X. This
gives us a directed system of spaces, directed by the poset (N,≤). It’s pretty clear that as a set the
direct limit of this system is the union of the subspaces. Saying that X is the direct limit of this
directed system of spaces is saying first that X is the union of the Xi’s, and second that the topology
on X is determined by the topology on the subspaces; it’s the “weak topology,” characterized by
the property that a map f : X → Y is continuous if and only if the restriction of f to each Xn is
continuous. This is saying that a subset of X is open if and only if its intersection with each Xn is
open in X. Our example is that a CW-complex is the direct limit of its skelata.
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Direct limits may be constructed from the material of coproducts and quotients. So suppose
X : I → C is a directed system. To construct the direct limit, begin by forming the coproduct over
the elements of I, ∐

i∈I
Xi .

There are maps ini : Xi →
∐
Xi, but they are not yet compatible with the order relation in I.

Form a quotient of the coproduct to enforce that compatibility:

lim−→
i∈I

Xi =

(∐
i∈I

Xi

)
/ ∼

where ∼ is the equivalence relation generated by requiring that for any i ∈ I and any x ∈ Xi,

inix ∼ injfij(x) .

The process of forming the coproduct and the quotient will depend upon the category you are
working in, and may not be possible. In sets, coproduct is disjoint union and the quotient just
forms equivalence classes. In abelian groups, the coproduct is the direct sum and to form the
quotient you divide by the subgroup generated by differences.

Direct limits and the tensor product are nicely related, and the way to see that is to use the
adjunction with Hom that we started with today.

Proposition 23.10. Let I be a direct set, and let M : I → ModR be a I-directed system of
R-modules. There is a natural isomorphism

(lim−→
I

Mi)⊗R N ∼= lim−→
I

(Mi ⊗R N) .

Proof. Let’s verify that both sides satisfy the same universal property. A map from (lim−→I
Mi)⊗RN

to an R-module L is the same thing as a linear map lim−→I
Mi → HomR(N,L). This is the same as

a compatible family of maps Mi → HomR(N,L), which in turn is the same as a compatible family
of maps Mi ⊗R N → L, which is the same as a linear map lim−→I

(Mi ⊗R N)→ L.

Here’s a lemma that lets us identify when a map to a constant functor is a direct limit.

Lemma 23.11. Let X : I → Ab (or ModR). A map f : X → cL (given by fi : Xi → L for i ∈ I)
is the direct limit if and only if:

1. For every x ∈ L, there exists an i and an xi ∈ Xi such that fi(xi) = x.

2. Let xi ∈ Xi be such that fi(xi) = 0 in L. Then there exists some j ≥ i such that fij(xi) = 0
in Xj.

Proof. Straightforward.

Proposition 23.12. The direct limit functor lim−→I
: Fun(I,Ab)→ Ab is exact. In other words, if

X
p−→ Y

q−→ Z is an exact sequence of I-directed systems (meaning that at every degree we get an
exact sequence of abelian groups), then lim−→I

X → lim−→I
Y → lim−→I

Z is exact.
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Proof. First of all, qp : X → Z is zero, which is to say that it factors through the constant zero
object, so lim−→I

X → lim−→I
Z is certainly the zero map. Let y ∈ lim−→I

Y , and suppose y maps to 0 in
lim−→I

Z. By condition (1) of Lemma 23.11, there exists i such that y = fi(yi) for some yi ∈ Yi. Then
0 = q(y) = fiq(yi) because q is a map of direct systems. By condition (2), this means that there is
j ≥ i such that fijq(yi) = 0 in Zj . So qfijyi = 0, again because q is a map of direct systems. We
have an element in Yj that maps to zero under q, so there is some xj ∈ Xj such that p(xj) = yj .
Then fj(xj) ∈ lim−→I

X maps to y.

The exactness of the direct limit has many useful consequences. For example:

Corollary 23.13. Let i 7→ C(i) be a directed system of chain complexes. Then there is a natural
isomorphism

lim−→
i∈I

H∗(C(i))→ H∗(lim−→
i∈I

C(i)) .

Putting together things we have just said:

Corollary 23.14. H∗(X; Q) = H∗(X)⊗Q.

So we can redefine the Betti numbers of a space X as

βn = dimQHn(X; Q)

and discuss the Euler characteristic entirely in terms of the rational vector spaces making up the
rational homology of X.

24 Universal coefficient theorem

Suppose that we are givenH∗(X; Z). Can we computeH∗(X; Z/2Z)? This is non-obvious. Consider
the map RP2 → S2 that pinches RP1 to a point. Now H2(RP2; Z) = 0, so in H2 this map is zero.
But in Z/2Z-coefficients, in dimension 2, this map gives an isomorphism. This shows that there’s
no functorial determination of H∗(X; Z/2) in terms of H∗(X; Z); the effect of a map in integral
homology does not determine its effect in mod 2 homology. So how do we go between different
coefficients?

Let R be a commutative ring and M an R-module, and suppose we have a chain complex C∗ of
R-modules. It could be the singular complex of a space, but it doesn’t have to be. Let’s compare
Hn(C∗)⊗M with Hn(C∗⊗M). (Here and below we’ll just write ⊗ for ⊗R.) The latter thing gives
homology with coefficients in M . How can we compare these two? Let’s investigate, and build up
conditions on R and C∗ as we go along.

yunpeng
Rectangle
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