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TorR0 (M,N) = M ⊗R N

since we know that M ⊗R − is right-exact.

22 The fundamental theorem of homological algebra

We will now show that the R-modules TorRn (M,N) are well-defined and functorial. This will be an
application of a very general principle.

Theorem 22.1 (Fundamental Theorem of Homological Algebra). Let M and N be R-modules; let

0←M ← E0 ← E1 ← · · ·

be a sequence in which each En is free; let

0← N ← F0 ← F1 ← · · ·

be an exact sequence; and let f : M → N be a homomorphism. Then we can lift f to a chain map
f∗ : E∗ → F∗, uniquely up to chain homotopy.

Proof. Let’s try to construct f0. Consider:

0 // K0 = ker(εM ) //

g0
��

E0
εM //

f0
��

M

f

��
0 // L0 = ker(εN ) // F0

εN // N // 0

We know that E0 = RS for some set S. What we do is map the generators of E0 into M via εM
and then into F via f , and then lift them to F0 via εN (which is possible because it’s surjective).
Then extend to a homomorphism, to get f0. You can restrict f0 to kernels to get g0.

Now the map d : E1 → E0 satisifes εM ◦ d = 0, and so factors through a map to K0 = ker εM .
Similarly, d : F1 → F0 factors through a map F1 → L0, and this map must be surjective because
the sequence F1 → F0 → N is exact. We find ourselves in exactly the same situation:

0 // K1
//

g1
��

E1
//

f1
��

K0

g0
��

0 // L1
// F1

// L0
// 0
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So we construct f∗ by induction.
Now we need to prove the chain homotopy claim. So suppose I have f∗, f ′∗ : E∗ → F∗, both lifting

f : M → N . Then f ′n − fn (which we’ll rename `n) is a chain map lifting 0 : M → N . We want to
consruct a chain null-homotopy of `∗; that is, we want h : En → Fn+1 such that dh+ hd = `n. At
the bottom, E−1 = 0, so we want h : E0 → F1 such that dh = `0. This factorization happens in
two steps.

E0

`0
��~~

h

vv

//M

0
��

F1
// // L0

// F0
εN // N .

First, εN`0 = 0 implies that `0 factors through L0 = ker εN . Next, F1 → L0 is surjective, by
exactness, and E0 is free, so we can lift generators and extend R-linearly to get h : E0 → F1..

The next step is organized by the diagram

E1
d //

`1
��~~

h

vv

E0

`0
��

h

~~
F2

// //

d

44L1
// F1

d // F0

This diagram doesn’t commute; dh = `0, but the (d, h, `1) triangle doesn’t commute. Rather, we
want to construct h : E1 → F2 such that dh = `1 − hd. Since

d(`1 − hd) = `0d− dhd = (`0 − dh)d = 0 .

the map `1 − hd lifts to L1 = ker d. But then it lifts through F2, since F2 → L1 is surjective and
E1 is free.

Exactly the same process continues.

This proof uses a property of freeness that is shared by a broader class of modules.

Definition 22.2. An R-module P is projective if any map out of P factors through any surjection:

M

����
P

>>

// N

Every free module is projective, and this is the property of freeness that we jave been using; the
Fundamental Theorem of Homological Algebra holds under the weaker assumption that each En is
projective.

Any direct summand in a projective is also projective. Any projective module is a direct sum-
mand of a free module. Over a PID, every projective is free, because any submodule of a free is
free. But there are examples of nonfree projectives:

Example 22.3. Let k be a field and let R be the product ring k× k. It acts on k in two ways, via
(a, b)c = ac and via (a, b)c = bc. These are both projective R-modules that are not free.

Now we will apply Theorem 22.1 to verify that our proposed construction of Tor is independent
of free (or projective!) resolution, and is functorial.
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Suppose I have f : N ′ → N . Pick arbitrary free resolutions N ′ ← F ′∗ and N ← F∗, and
pick any chain map f∗ : F ′∗ → F∗ lifting f . We claim that the map induced in homology by
1 ⊗ f∗ : M ⊗R F ′∗ → M ⊗R F∗ is independent of the choice of lift. Suppose f ′∗ is another lift, and
pick a chain homotopy h : f∗ ' f ′∗. Since M ⊗R − is additive, the relation

1⊗ h : 1⊗ f∗ ' 1⊗ f ′∗

still holds. So 1⊗ f∗ and 1⊗ f ′∗ induce the same map in homology.
For example, suppose that F∗ and F ′∗ are two projective resolutions of N . Any two lifts of the

identity map are chain-homotopic, and so induce the same map H∗(M ⊗R F∗) → H∗(M ⊗R F ′∗).
So if f : F∗ → F ′∗ and g : F ′∗ → F∗ are chain maps lifing the identity, then f∗ ◦ g∗ induces the same
self-map of H∗(M ⊗R F ′∗) as the identity self-map does, and so (by functoriality) is the identity.
Similarly, g∗ ◦ f∗ induces the identity map on H∗(M ⊗R F∗). So they induce inverse isomorphisms.

Putting all this together shows that any two projective resolutions of N induce canonically
isomorphic modules TorRn (M,N), and that a homomorphism f : N ′ → N induces a well defined
map TorRn (M,N ′)→ TorRn (M,N) that renders TorRn (M,−) a functor.

My last comment about Tor is that there’s a symmetry there. Of course, M ⊗R N ∼= N ⊗RM .
This uses the fact that R is commutative. This leads right on to saying that TorRn (M,N) ∼=
TorRn (N,M). We’ve been computing Tor by taking a resolution of the second variable. But I could
equally have taken a resolution of the first variable. This follows from Theorem 22.1.

Example 22.4. I want to give an example when you do have higher Tor modules. Let k be a field,
and let R = k[d]/(d2). This is sometimes called the “dual numbers,” or the exterior algebra over k.
What is an R-module? It’s just a k-vector space M with an operator d (given by multiplication by
d) that satisfies d2 = 0. Even though there’s no grading around, I can still define the “homology”
of M :

H(M ; d) =
ker d

im d
.

This k-algebra is augmented by an algebra map ε : R → k splitting the unit; ε(d) = 0. This
renders k an R-module. Let’s construct a free R-module resolution of this module. Here’s a picture.

• oo

• •oo

• •oo

• •oo

• •oo

The vertical lines indicate multiplication by d. We could write this as

0← k
ε←− R d←− R d←− R← · · · .

Now tensor this over R with an R-module M ; so M is a vector space equipped with an operator
d with d2 = 0. Each copy of R gets replaced by a copy ofM , and the differential gives multiplication
by d on M . So taking homology gives

TorRn (k,M) =

{
k ⊗RM = M/dM for n = 0

H(M ; d) forn > 0 .

So for example
TorRn (k, k) = k for n ≥ 0 .
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