15 CW-complexes II

We have a few more general things to say about CW complexes.

Suppose X is a CW complex, with skeleton filtration $\emptyset = X_{-1} \subseteq X_0 \subseteq X_1 \subseteq \cdots \subseteq X$ and cell structure

In each case, the boundary of a cell gets identified with part of the previous skeleton, but the "interior"

$$\operatorname{Int} D^n = \{ x \in D^n : |x| < 1 \}$$

does not. (Note that $IntD^0 = D^0$.) Thus as sets – ignoring the topology –

$$X = \coprod_{n \ge 0} \coprod_{\alpha \in A_n} \operatorname{Int}(D^n_\alpha)$$

The subsets $\operatorname{Int} D^n$ are called "open *n*-cells," despite the fact that they not generally open in the topology on X, and (except when n = 0) they are not homeomorphic to compact disks.

Definition 15.1. Let X be a CW-complex with a cell structure $\{g_{\alpha} : D_{\alpha}^{n} \to X_{n} : \alpha \in A_{n}, n \geq 0\}$. A subcomplex is a subspace $Y \subseteq X$ such that for all n, there is a subset B_{n} of A_{n} such that $Y_{n} = Y \cap X_{n}$ provides Y with a CW-structure with characteristic maps $\{g_{\beta} : \beta \in B_{n}, n \geq 0\}$.

Example 15.2. $Sk_n X \subseteq X$ is a subcomplex.

Proposition 15.3. Let X be a CW-complex with a chosen cell structure. Any compact subspace of X lies in some finite subcomplex.

Proof. See [2], p. 196.

Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes.

The *n*-sphere S^n (for n > 0) admits a very simple CW structure: Let $* = \text{Sk}_0(S^n) = \text{Sk}_1(S^n) = \cdots = \text{Sk}_{n-1}(S^n)$, and attach an *n*-cell using the unique map $S^{n-1} \to *$. This is a minimal CW structure – you need at least two cells to build S^n .

This is great – much simpler than the simplest construction of S^n as a simplicial complex – but it is not ideal for all applications. Here's another CW-structure on S^n . Regard $S^n \subseteq \mathbb{R}^{n+1}$, filter the Euclidean space by leading subspaces

$$\mathbf{R}^k = \langle e_1, \ldots, e_k \rangle.$$

and define

$$\mathrm{Sk}_k S^n = S^n \cap \mathbf{R}^{k+1} = S^k$$

Now there are two k-cells for each k with $0 \le k \le n$, given by the two hemispheres of S^k . For each k there are two characteristic maps,

$$u, \ell: D^k \to S^k$$

defining the upper and lower hemispheres:

$$u(x) = (x, \sqrt{1 - |x|^2}), \quad \ell(x) = (x, -\sqrt{1 - |x|^2})$$

Note that if |x| = 1 then $|u(x)| = |\ell(x)| = 1$, so each characteristic map restricts on the boundary to a map to S^{k-1} , and serves as an attaching map. This cell structure has the advantage that S^{n-1} is a subcomplex of S^n .

The case $n = \infty$ is allowed here. Then \mathbf{R}^{∞} denotes the countably infinite dimensional inner product space that is the topological union of the leading subspaces \mathbf{R}^n . The CW-complex S^{∞} is of finite type but not finite dimensional. It has the following interesting property. We know that S^n is not contractible (because the identity map and a constant map have different behavior in homology), but:

Proposition 15.5. S^{∞} is contractible.

Proof. This is an example of a "swindle," making use of infinite dimensionality. Let $T : \mathbf{R}^{\infty} \to \mathbf{R}^{\infty}$ send (x_1, x_2, \ldots) to $(0, x_1, x_2, \ldots)$. This sends S^{∞} to itself. The location of the leading nonzero entry is different for x and Tx, so the line segment joining x to Tx doesn't pass through the origin. Therefore

$$x \mapsto \frac{tx + (1-t)Tx}{|tx + (1-t)Tx|}$$

provides a homotopy $1 \simeq T$. On the other hand, T is homotopic to the constant map with value $(1, 0, 0, \ldots)$, again by an affine homotopy.

This "inefficient" CW structure on S^n has a second advantage: it's *equivariant* with respect to the antipodal involution. This provides us with a CW structure on the orbit space for this action.

Recall that $\mathbf{RP}^k = S^k / \sim$ where $x \sim -x$. The quotient map $\pi : S^k \to \mathbf{RP}^k$ is a double cover, identifying upper and lower hemispheres. The inclusion of one sphere in the next is compatible with this equivalence relation, and gives us "linear" embeddings $\mathbf{RP}^{k-1} \subseteq \mathbf{RP}^k$. This suggests that

$$\varnothing \subseteq \mathbf{RP}^0 \subseteq \mathbf{RP}^1 \subseteq \cdots \subseteq \mathbf{RP}^n$$

might serve as a CW filtration. Indeed, for each k,

is a pushout: A line in \mathbf{R}^{k+1} either lies in \mathbf{R}^k or is determined by a unique point in the upper hemisphere of S^k .

Bibliography

- M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293–297.
- [2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
- [3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
- [4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199–236.
- [5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
- [6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- [7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294–329.
- [8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337–341.
- J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549–557.
- [10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56–69.

MIT OpenCourseWare https://ocw.mit.edu

18.905 Algebraic Topology I Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.