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15 CW-complexes II

We have a few more general things to say about CW complexes.
Suppose X is a CW complex, with skeleton filtration ∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X and cell

structure ∐
α∈An

Sn−1
α

fn //
� _

��

Xn−1

��∐
α∈An

Dn
α

gn // Xn

.

In each case, the boundary of a cell gets identified with part of the previous skeleton, but the
“interior”

IntDn = {x ∈ Dn : |x| < 1}

does not. (Note that IntD0 = D0.) Thus as sets – ignoring the topology –

X =
∐
n≥0

∐
α∈An

Int(Dn
α) .

The subsets IntDn are called “open n-cells,” despite the fact that they not generally open in the
α

topology on X, and (except when n = 0) they are not homeomorphic to compact disks.

Definition 15.1. Let X be a CW-complex with a cell structure {gα : Dα
n → Xn : α ∈ An, n ≥ 0}. 

A subcomplex is a subspace Y ⊆ X such that for all n, there is a subset Bn of An such that 
Yn = Y ∩ Xn provides Y with a CW-structure with characteristic maps {gβ : β ∈ Bn, n ≥ 0}.

Example 15.2. SknX ⊆ X is a subcomplex.

Proposition 15.3. Let X be a CW-complex with a chosen cell structure. Any compact subspace of 
X lies in some finite subcomplex.

Proof. See [2], p. 196.

Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes.

The n-sphere Sn (for n > 0) admits a very simple CW structure: Let ∗ = Sk0(Sn) = Sk1(Sn) = 
· · · = Skn−1(Sn), and attach an n-cell using the unique map Sn−1 → ∗. This is a minimal CW 
structure – you need at least two cells to build Sn.

This is great – much simpler than the simplest construction of Sn as a simplicial complex – but 
it is not ideal for all applications. Here’s another CW-structure on Sn. Regard Sn ⊆ Rn+1, filter 
the Euclidean space by leading subspaces

Rk = 〈e1, . . . , ek〉 .

and define
SkkS

n = Sn ∩ Rk+1 = Sk .
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Now there are two k-cells for each k with 0 ≤ k ≤ n, given by the two hemispheres of Sk. For
each k there are two characteristic maps,

u, ` : Dk → Sk

defining the upper and lower hemispheres:

u(x) = (x,
√

1− |x|2) , `(x) = (x,−
√

1− |x|2) .

Note that if |x| = 1 then |u(x)| = |`(x)| = 1, so each characteristic map restricts on the boundary
to a map to Sk−1, and serves as an attaching map. This cell structure has the advantage that Sn−1

is a subcomplex of Sn.
The case n = ∞ is allowed here. Then R∞ denotes the countably infinite dimensional inner

product space that is the topological union of the leading subspaces Rn. The CW-complex S∞ is
of finite type but not finite dimensional. It has the following interesting property. We know that
Sn is not contractible (because the identity map and a constant map have different behavior in
homology), but:

Proposition 15.5. S∞ is contractible.

Proof. This is an example of a “swindle,” making use of infinite dimensionality. Let T : R∞ → R∞

send (x1, x2, . . .) to (0, x1, x2, . . .). This sends S∞ to itself. The location of the leading nonzero
entry is different for x and Tx, so the line segment joining x to Tx doesn’t pass through the origin.
Therefore

x 7→ tx+ (1− t)Tx
|tx+ (1− t)Tx|

provides a homotopy 1 ' T . On the other hand, T is homotopic to the constant map with value
(1, 0, 0, . . .), again by an affine homotopy.

This “inefficient” CW structure on Sn has a second advantage: it’s equivariant with respect to
the antipodal involution. This provides us with a CW structure on the orbit space for this action.

Recall that RPk = Sk/ ∼ where x ∼ −x. The quotient map π : Sk → RPk is a double cover,
identifying upper and lower hemispheres. The inclusion of one sphere in the next is compatible with
this equivalence relation, and gives us “linear” embeddings RPk−1 ⊆ RPk. This suggests that

∅ ⊆ RP0 ⊆ RP1 ⊆ · · · ⊆ RPn
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might serve as a CW filtration. Indeed, for each k,

Sk−1 //

π
��

Dk

u
��

RPk−1 // RPk

is a pushout: A line in Rk+1 either lies in Rk or is determined by a unique point in the upper
hemisphere of Sk.

16 Homology of CW-complexes

The skeleton filtration of a CW complex leads to a long exact sequence in homology, showing that
the relative homology H∗(Xk, Xk−1) controls how the homology changes when you pass from Xk−1

to Xk. What is this relative homology? If we pick a set of attaching maps, we get the following

� //

��

//

�� ��� // //

yunpeng
Rectangle
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