15 CW-complexes II

We have a few more general things to say about CW complexes.
Suppose X is a CW complex, with skeleton filtration $\varnothing=X_{-1} \subseteq X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X$ and cell structure

In each case, the boundary of a cell gets identified with part of the previous skeleton, but the "interior"

$$
\operatorname{Int} D^{n}=\left\{x \in D^{n}:|x|<1\right\}
$$

does not. (Note that $\operatorname{Int} D^{0}=D^{0}$.) Thus as sets - ignoring the topology -

$$
X=\coprod_{n \geq 0} \coprod_{\alpha \in A_{n}} \operatorname{Int}\left(D_{\alpha}^{n}\right) .
$$

The subsets $\operatorname{Int} D^{n}$ are called "open n-cells," despite the fact that they not generally open in the topology on X, and (except when $n=0$) they are not homeomorphic to compact disks.

Definition 15.1. Let X be a CW-complex with a cell structure $\left\{g_{\alpha}: D_{\alpha}^{n} \rightarrow X_{n}: \alpha \in A_{n}, n \geq 0\right\}$. A subcomplex is a subspace $Y \subseteq X$ such that for all n, there is a subset B_{n} of A_{n} such that $Y_{n}=Y \cap X_{n}$ provides Y with a CW-structure with characteristic maps $\left\{g_{\beta}: \beta \in B_{n}, n \geq 0\right\}$.

Example 15.2. $\mathrm{Sk}_{n} X \subseteq X$ is a subcomplex.
Proposition 15.3. Let X be a $C W$-complex with a chosen cell structure. Any compact subspace of X lies in some finite subcomplex.

Proof. See [2], p. 196.
Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes.
The n-sphere S^{n} (for $n>0$) admits a very simple CW structure: Let $*=\operatorname{Sk}_{0}\left(S^{n}\right)=\operatorname{Sk}_{1}\left(S^{n}\right)=$ $\cdots=\operatorname{Sk}_{n-1}\left(S^{n}\right)$, and attach an n-cell using the unique map $S^{n-1} \rightarrow *$. This is a minimal CW structure - you need at least two cells to build S^{n}.

This is great - much simpler than the simplest construction of S^{n} as a simplicial complex - but it is not ideal for all applications. Here's another CW-structure on S^{n}. Regard $S^{n} \subseteq \mathbf{R}^{n+1}$, filter the Euclidean space by leading subspaces

$$
\mathbf{R}^{k}=\left\langle e_{1}, \ldots, e_{k}\right\rangle .
$$

and define

$$
\mathrm{Sk}_{k} S^{n}=S^{n} \cap \mathbf{R}^{k+1}=S^{k}
$$

Now there are two k-cells for each k with $0 \leq k \leq n$, given by the two hemispheres of S^{k}. For each k there are two characteristic maps,

$$
u, \ell: D^{k} \rightarrow S^{k}
$$

defining the upper and lower hemispheres:

$$
u(x)=\left(x, \sqrt{1-|x|^{2}}\right), \quad \ell(x)=\left(x,-\sqrt{1-|x|^{2}}\right) .
$$

Note that if $|x|=1$ then $|u(x)|=|\ell(x)|=1$, so each characteristic map restricts on the boundary to a map to S^{k-1}, and serves as an attaching map. This cell structure has the advantage that S^{n-1} is a subcomplex of S^{n}.

The case $n=\infty$ is allowed here. Then \mathbf{R}^{∞} denotes the countably infinite dimensional inner product space that is the topological union of the leading subspaces \mathbf{R}^{n}. The CW-complex S^{∞} is of finite type but not finite dimensional. It has the following interesting property. We know that S^{n} is not contractible (because the identity map and a constant map have different behavior in homology), but:

Proposition 15.5. S^{∞} is contractible.
Proof. This is an example of a "swindle," making use of infinite dimensionality. Let $T: \mathbf{R}^{\infty} \rightarrow \mathbf{R}^{\infty}$ send $\left(x_{1}, x_{2}, \ldots\right)$ to $\left(0, x_{1}, x_{2}, \ldots\right)$. This sends S^{∞} to itself. The location of the leading nonzero entry is different for x and $T x$, so the line segment joining x to $T x$ doesn't pass through the origin. Therefore

$$
x \mapsto \frac{t x+(1-t) T x}{|t x+(1-t) T x|}
$$

provides a homotopy $1 \simeq T$. On the other hand, T is homotopic to the constant map with value $(1,0,0, \ldots)$, again by an affine homotopy.

This "inefficient" CW structure on S^{n} has a second advantage: it's equivariant with respect to the antipodal involution. This provides us with a CW structure on the orbit space for this action.

Recall that $\mathbf{R} \mathbf{P}^{k}=S^{k} / \sim$ where $x \sim-x$. The quotient map $\pi: S^{k} \rightarrow \mathbf{R P}^{k}$ is a double cover, identifying upper and lower hemispheres. The inclusion of one sphere in the next is compatible with this equivalence relation, and gives us "linear" embeddings $\mathbf{R} \mathbf{P}^{k-1} \subseteq \mathbf{R} \mathbf{P}^{k}$. This suggests that

$$
\varnothing \subseteq \mathbf{R} \mathbf{P}^{0} \subseteq \mathbf{R} \mathbf{P}^{1} \subseteq \cdots \subseteq \mathbf{R P}^{n}
$$

might serve as a CW filtration. Indeed, for each k,

is a pushout: A line in \mathbf{R}^{k+1} either lies in \mathbf{R}^{k} or is determined by a unique point in the upper hemisphere of S^{k}.

Bibliography

[1] M. G. Barratt and J. Milnor, An example of anomalous singular homology, Proc. Amer. Math. Soc. 13 (1962) 293-297.
[2] G. Bredon, Topology and Geometry, Springer-Verlag, 1993.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1980.
[4] S. Eilenberg and J. C. Moore, Homology and fibrations, I: Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1965) 199-236.
[5] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
[6] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[7] D. Kan, Adjoint funtors, Trans. Amer. Math. Soc. 87 (1958) 294-329.
[8] J. Milnor, On axiomatic homology theory, Pacific J. Math 12 (1962) 337-341.
[9] J. C. Moore, On the homotopy groups of spaces with a single non-vanishing homology group, Ann. Math. 59 (1954) 549-557.
[10] C. T. C Wall, Finiteness conditions for CW complexes, Ann. Math. 81 (1965) 56-69.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

