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13 Proof of the Locality Principle

We have constructed the subdivision operator $ : S∗(X) → S∗(X), with the idea that it will shrink 
chains and by iteration eventually render any chain A-small. Does $ succeed in making simplices 
smaller? Let’s look first at the affine case. Recall that the “diameter” of a subset X of a metric 
space is given by

diam(X) = sup{d(x, y) : x, y ∈ X} .

Lemma 13.1. Let σ be an affine n-simplex, and τ a simplex in $σ. Then diam(τ) ≤ n
n+1diam(σ).

Proof. Suppose that the vertices of σ are v0, v1, . . . , vn. Let b be the barycenter of σ, and write the
vertices of τ as w0 = b, w1, . . . , wn. We want to estimate |wi − wj |. First, compute

|b− vi| =
∣∣∣∣v0 + · · ·+ vn − (n+ 1)vi

n+ 1

∣∣∣∣ =

∣∣∣∣(v0 − vi) + (v1 − vi) + · · ·+ (vn − vi)
n+ 1

∣∣∣∣ .
One of the terms in the numerator is zero, so we can continue:

|b− vi| ≤
n+ 1

max
i,j
|vi − vj | =

n n

n+ 1
diam(σ)

Since wi ∈ σ,
|b− wi| ≤ max

i
|b− vi| ≤

n

n+ 1
diam(σ) .
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For the other cases, we use induction:

|wi − wj | ≤ diam(simplex in $dσ) ≤ n− 1

n
diam(dσ) ≤ n

n+ 1
diam(σ) .

Now let’s transfer this calculation to singular simplices in a space X equipped with a cover A.

Lemma 13.2. For any singular chain c, some iterate of the subdivision operator sends c to an
A-small chain.

Proof. We may assume that c is a single simplex σ : ∆n → X, because in general you just take the
largest of the iterates of $ needed to send the simplices in c to a A-small chains. We now encounter
another of the great virtues of singular homology: we pull A back to a cover of the standard simplex.
Define an open cover of ∆n by

U := {σ−1(Int(A)) : A ∈ A} .

The space ∆n is a compact metric space, and so is subject to the Lebesgue covering lemma, which
we apply to the open cover U.

Lemma 13.3 (Lebesgue covering lemma). Let M be a compact metric space, and let U be an open
cover. Then there is ε > 0 such that for all x ∈M , Bε(x) ⊆ U for some U ∈ U.

To apply this, we will have to understand iterates of the subdivision operator.

Lemma 13.4. For any k ≥ 1, $k ' 1 : S∗(X)→ S∗(X).

Proof. We construct Tk such that dTk+Tkd = $k−1. To begin, we take T1 = T , since dT+Td = $−1.
Let’s apply $ to this equation. We get $dT + $Td = $2 − $. Sum up these two equations to get

dT + Td+ $dT + $Td = $2 − 1 ,

which simplifies to
d($ + 1)T + ($ + 1)Td = $2 − 1

since $d = d$.
So define T2 = ($ + 1)T . Continuing, you see that we can define

Tk = ($k−1 + $k−2 + · · ·+ 1)T .

We are now in position to prove the Locality Principle, which we recall:
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Theorem 13.5 (The locality principle). Let A be a cover of a space X. The inclusion SA
∗ (X) ⊆

S∗(X) is a quasi-isomorphism; that is, HA
∗ (X)→ H∗(X) is an isomorphism.

Proof. To prove surjectivity let c be an n-cycle in X. We want to find an A-small n-cycle that is
homologous to c. There’s only one thing to do. Pick k such that $kc is A-small. This is a cycle
because because $k is a chain map. I want to compare this new cycle with c. That’s what the chain
homotopy Tk is designed for:

$kc− c = dTkc+ Tkdc = dTkc

since c is a cycle. So $kc and c are homologous.
Now for injectivity. Suppose c is a cycle in SAn (X) such that c = db for some b ∈ Sn+1(X). We

want c to be a boundary of an A-small chain. Use the chain homotopy Tk again: Suppose that k is
such that $kc is A-small. Compute:

d$kb− c = d($k − 1)b = d(dTk + Tkd)b = dTkc

so
c = d$kb− dTkc = d($kb− Tkc) .

Now, $kb is A-small, by choice of k. Is Tkc also A-small? I claim that it is. Why? It is enough
to show that Tkσ is A-small if σ is. We know that σ = σ∗ιn. Because σ is A-small, we know that
σ : ∆n → X is the composition i∗σ where σ : ∆n → A and i : A → X is the inclusion of some
A ∈ A. By naturality, then, Tkσ = Tki∗σ = i∗Tkσ, which certainly is A-small.

This completes the proof of the Eilenberg Steenrod axioms for singular homology. In the next
chapter, we will develop a variety of practical tools, using these axioms to compute the singular
homology of many spaces.
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