12 Subdivision

We will begin the proof of the locality principle today, and finish it in the next lecture. The key is a process of subdivision of singular simplices. It will use the "cone construction" $b *$ from Lecture 5. The cone construction dealt with a region X in Euclidean space, star-shaped with respect to $b \in X$, and gave a chain-homotopy between the identity and the "constant map" on $S_{*}(X)$:

$$
d b *+b * d=1-\eta \epsilon
$$

where $\epsilon: S_{*}(X) \rightarrow \mathbf{Z}$ is the augmentation and $\eta: \mathbf{Z} \rightarrow S_{*}(X)$ sends 1 to the constant 0 -chain c_{b}^{0}.
Let's see how the cone construction can be used to "subdivide" an "affine simplex." An affine simplex is the convex hull of a finite set of points in Euclidean space. To make this non-degenerate, assume that the points $v_{0}, v_{1}, \ldots, v_{n}$, have the property that $\left\{v_{1}-v_{0}, \ldots, v_{n}-b_{0}\right\}$ is linearly independent. The barycenter of this simplex is the center of mass of the vertices,

$$
b=\frac{1}{n+1} \sum v_{i} .
$$

Start with $n=1$. To subdivide a 1 -simplex, just cut it in half. For the 2 -simplex, look at the subdivision of each face, and form the cone of them with the barycenter of the 2 -simplex. This gives us a decomposition of the 2 -simplex into six sub-simplices.

We want to formalize this process, and extend it to singular simplices (using naturality, of course). Define a natural transformation

$$
\$: S_{n}(X) \rightarrow S_{n}(X)
$$

by defining it on standard n-simplex, namely by specifying what $\$\left(\iota_{n}\right)$ is where $\iota_{n}: \Delta^{n} \rightarrow \Delta^{n}$ is the universal n-simplex, and then extending by naturality:

$$
\$(\sigma)=\sigma_{*} \$\left(\iota_{n}\right)
$$

Here's the definition. When $n=0$, define $\$$ to be the identity; i.e., $\$ \iota_{0}=\iota_{0}$. For $n>0$, define

$$
\$ \iota_{n}:=b_{n} * \$ d \iota_{n}
$$

where b_{n} is the barycenter of Δ^{n}. This makes a lot of sense if you draw out a picture, and it's a very clever definition that captures the geometry we described.

The dollar sign symbol is a little odd, but consider: it derives from the symbol for the Spanish piece of eight, which was meant to be subdivided (so for example two bits is a quarter).

Here's what we'll prove.
Proposition 12.1. $\$$ is a natural chain map $S_{*}(X) \rightarrow S_{*}(X)$ that is naturally chain-homotopic to the identity.

Proof. Let's begin by proving that it's a chain map. We'll use induction on n. It's enough to show that $d \$ \iota_{n}=\$ d \iota_{n}$, because then, for any n-simplex σ,

$$
d \$ \sigma=d \$ \sigma_{*} \iota_{n}=\sigma_{*} d \$ \iota_{n}=\sigma_{*} \$ d \iota_{n}=\$ d \sigma_{*} \iota_{n}=\$ d \sigma .
$$

Dimension zero is easy: since $S_{-1}=0, d \$ \iota_{0}$ and $\$ d \iota_{0}$ are both zero and hence equal.
For $n \geq 1$, we want to compute $d \$ \iota_{n}$. This is:

$$
\begin{aligned}
d \$ \iota_{n} & =d\left(b_{n} * \$ d \iota_{n}\right) \\
& =\left(1-\eta_{b} \epsilon-b_{n} * d\right)\left(\$ d \iota_{n}\right)
\end{aligned}
$$

What happens when $n=1$? Well,

$$
\eta_{b} \epsilon \$ d \iota_{1}=\eta_{b} \epsilon \$\left(c_{1}^{0}-c_{0}^{0}\right)=\eta_{b} \epsilon\left(c_{1}^{0}-c_{0}^{0}\right)=0
$$

since ϵ takes sums of coefficients. So the $\eta_{b} \epsilon$ term drops out for any $n \geq 1$. Let's continue, using the inductive hypothesis:

$$
\begin{aligned}
d \$ \iota_{n} & =\left(1-b_{n} * d\right)\left(\$ d \iota_{n}\right) \\
& =\$ d \iota_{n}-b_{n} * d \$ d \iota_{n} \\
& =\$ d \iota_{n}-b_{n} \$ d^{2} \iota_{n} \\
& =\$ d \iota_{n}
\end{aligned}
$$

because $d^{2}=0$.
To define the chain homotopy T, we'll just write down a formula and not try to justify it. Making use of naturality, we just need to define $T \iota_{n}$. Here it is:

$$
T \iota_{n}=b_{n} *\left(\$ \iota_{n}-\iota_{n}-T d \iota_{n}\right) \in S_{n+1}\left(\Delta^{n}\right) .
$$

Once again, we're going to check that T is a chain homotopy by induction, and, again, we need to check only on the universal case.

When $n=0$, the formula gives $T \iota_{0}=0$ (which starts the inductive definition!) so it's true that $d T \iota_{0}-T d \iota_{0}=\$ \iota_{0}-\iota_{0}$. Now let's assume that $d T c-T d c=\$ c-c$ for every $(n-1)$-chain c. Let's start by computing $d T \iota_{n}$:

$$
\begin{aligned}
d T \iota_{n} & =d_{n}\left(b_{n} *\left(\$ \iota_{n}-\iota_{n}-T d \iota_{n}\right)\right) \\
& =\left(1-b_{n} * d\right)\left(\$ \iota_{n}-\iota_{n}-T d \iota_{n}\right) \\
& =\$ \iota_{n}-\iota_{n}-T d \iota_{n}-b_{n} *\left(d \$ \iota_{n}-d \iota_{n}-d T d \iota_{n}\right)
\end{aligned}
$$

All we want now is that $b_{n} *\left(d \$ \iota_{n}-d \iota_{n}-d T d \iota_{n}\right)=0$. We can do this using the inductive hypothesis, because $d \iota_{n}$ is in dimension $n-1$.

$$
\begin{aligned}
d T d \iota_{n} & =-T d\left(d \iota_{n}\right)+\$ d \iota_{n}-d \iota_{n} \\
& =\$ d \iota_{n}-d \iota_{n} \\
& =d \$ \iota_{n}-d \iota_{n} .
\end{aligned}
$$

This means that $d \$ \iota_{n}-d \iota_{n}-d T d \iota_{n}=0$, so T is indeed a chain homotopy.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

