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12 Subdivision

We will begin the proof of the locality principle today, and finish it in the next lecture. The key is
a process of subdivision of singular simplices. It will use the “cone construction” b∗ from Lecture 5.
The cone construction dealt with a region X in Euclidean space, star-shaped with respect to b ∈ X,
and gave a chain-homotopy between the identity and the “constant map” on S∗(X):

db ∗+b ∗ d = 1− ηε

where ε : S∗(X)→ Z is the augmentation and η : Z→ S∗(X) sends 1 to the constant 0-chain c0
b .

Let’s see how the cone construction can be used to “subdivide” an “affine simplex.” An affine
simplex is the convex hull of a finite set of points in Euclidean space. To make this non-degenerate,
assume that the points v0, v1, . . . , vn, have the property that {v1 − v0, . . . , vn − b0} is linearly inde-
pendent. The barycenter of this simplex is the center of mass of the vertices,

b =
1

n+ 1

∑
vi .

Start with n = 1. To subdivide a 1-simplex, just cut it in half. For the 2-simplex, look at the
subdivision of each face, and form the cone of them with the barycenter of the 2-simplex. This gives
us a decomposition of the 2-simplex into six sub-simplices.
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We want to formalize this process, and extend it to singular simplices (using naturality, of
course). Define a natural transformation

$ : Sn(X)→ Sn(X)

by defining it on standard n-simplex, namely by specifying what $(ιn) is where ιn : ∆n → ∆n is the
universal n-simplex, and then extending by naturality:

$(σ) = σ∗$(ιn) .

Here’s the definition. When n = 0, define $ to be the identity; i.e., $ι0 = ι0. For n > 0, define

$ιn := bn ∗ $dιn

where bn is the barycenter of ∆n. This makes a lot of sense if you draw out a picture, and it’s a
very clever definition that captures the geometry we described.

The dollar sign symbol is a little odd, but consider: it derives from the symbol for the Spanish
piece of eight, which was meant to be subdivided (so for example two bits is a quarter).

Here’s what we’ll prove.

Proposition 12.1. $ is a natural chain map S∗(X)→ S∗(X) that is naturally chain-homotopic to
the identity.

Proof. Let’s begin by proving that it’s a chain map. We’ll use induction on n. It’s enough to show
that d$ιn = $dιn, because then, for any n-simplex σ,

d$σ = d$σ∗ιn = σ∗d$ιn = σ∗$dιn = $dσ∗ιn = $dσ .

Dimension zero is easy: since S−1 = 0, d$ι0 and $dι0 are both zero and hence equal.
For n ≥ 1, we want to compute d$ιn. This is:

d$ιn = d(bn ∗ $dιn)

= (1− ηbε− bn ∗ d)($dιn)

What happens when n = 1? Well,

ηbε$dι1 = ηbε$(c0
1 − c0

0) = ηbε(c
0
1 − c0

0) = 0 ,
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since ε takes sums of coefficients. So the ηbε term drops out for any n ≥ 1. Let’s continue, using
the inductive hypothesis:

d$ιn = (1− bn ∗ d)($dιn)

= $dιn − bn ∗ d$dιn

= $dιn − bn$d2ιn

= $dιn

because d2 = 0.
To define the chain homotopy T , we’ll just write down a formula and not try to justify it. Making

use of naturality, we just need to define Tιn. Here it is:

Tιn = bn ∗ ($ιn − ιn − Tdιn) ∈ Sn+1(∆n) .

Once again, we’re going to check that T is a chain homotopy by induction, and, again, we need to
check only on the universal case.

When n = 0, the formula gives Tι0 = 0 (which starts the inductive definition!) so it’s true that
dT ι0 − Tdι0 = $ι0 − ι0. Now let’s assume that dTc− Tdc = $c− c for every (n− 1)-chain c. Let’s
start by computing dT ιn:

dT ιn = dn(bn ∗ ($ιn − ιn − Tdιn))

= (1− bn ∗ d)($ιn − ιn − Tdιn)

= $ιn − ιn − Tdιn − bn ∗ (d$ιn − dιn − dTdιn)

All we want now is that bn∗(d$ιn−dιn−dTdιn) = 0. We can do this using the inductive hypothesis,
because dιn is in dimension n− 1.

dTdιn = −Td(dιn) + $dιn − dιn
= $dιn − dιn
= d$ιn − dιn .

This means that d$ιn − dιn − dT dιn = 0, so T is indeed a chain homotopy.
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