10 Excision and applications

We have found two general properties of singular homology: homotopy invariance and the long exact sequence of a pair. We also claimed that $H_{*}(X, A)$ "depends only on $X-A$." You have to be careful about this. The following definition gives conditions that will capture the sense in which the relative homology of a pair (X, A) depends only on the complement of A in X.

Definition 10.1. A triple (X, A, U) where $U \subseteq A \subseteq X$, is excisive if $\bar{U} \subseteq \operatorname{Int}(A)$. The inclusion $(X-U, A-U) \subseteq(X, A)$ is then called an excision.

Theorem 10.2. An excision induces an isomorphism in homology,

$$
H_{*}(X-U, A-U) \stackrel{ }{\cong} H_{*}(X, A) .
$$

So you can cut out closed bits of the interior of A without changing the relative homology. The proof will take us a couple of days. Before we give applications, let me pose a different way to interpret the motto " $H_{*}(X, A)$ depends only on $X-A$." Collapsing the subspace A to a point gives us a map of pairs

$$
(X, A) \rightarrow(X / A, *)
$$

When does this map induce an isomorphism in homology? Excision has the following consequence.
Corollary 10.3. Assume that there is a subspace B of X such that (1) $\bar{A} \subseteq \operatorname{Int} B$ and (2) $A \rightarrow B$ is a deformation retract. Then

$$
H_{*}(X, A) \rightarrow H_{*}(X / A, *)
$$

is an isomorphism.
Proof. The diagram of pairs

commutes. We want the left vertical to be a homology isomorphism, and will show that the rest of the perimeter consists of homology isomorphisms. The map k is a homeomorphism of pairs while j is an excision by assumption (1). The map i induces an isomorphism in homology by assumption (2), the long exact sequences, and the five-lemma. Since I is a compact Hausdorff space, the map $B \times I \rightarrow B / A \times I$ is again a quotient map, so the deformation $B \times I \rightarrow B$, which restricts to the constant deformation on A, descends to show that $* \rightarrow B / A$ is a deformation retract. So the map $\bar{\imath}$ is also a homology isomorphism. Finally, $\bar{*} \subseteq \operatorname{Int}(B / A)$ in X / A, by definition of the quotient topology, so $\bar{\jmath}$ induces an isomorphism by excision.

Now what are some consequences? For a start, we'll finally get around to computing the homology of the sphere. It happens simultaneously with a computation of $H_{*}\left(D^{n}, S^{n-1}\right)$. (Note that $S^{-1}=\varnothing$.) To describe generators, for each $n \geq 0$ pick a homeomorphism

$$
\left(\Delta^{n}, \partial \Delta^{n}\right) \rightarrow\left(D^{n}, S^{n-1}\right)
$$

and write

$$
\iota_{n} \in S_{n}\left(D^{n}, S^{n-1}\right)
$$

for the corresponding relative n-chain.
Proposition 10.4. Let $n>0$ and let $* \in S^{n-1}$ be any point. Then:

$$
H_{q}\left(S^{n}\right)= \begin{cases}\mathbf{Z}=\left\langle\left[\partial \iota_{n+1}\right]\right\rangle & \text { if } q=n>0 \\ \mathbf{Z}=\left\langle\left[c_{*}^{0}\right]\right\rangle & \text { if } q=0, n>0 \\ \mathbf{Z} \oplus \mathbf{Z}=\left\langle\left[c_{*}^{0}\right],\left[\partial \iota_{1}\right]\right\rangle & \text { if } q=n=0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
H_{q}\left(D^{n}, S^{n-1}\right)= \begin{cases}\mathbf{Z}=\left\langle\left[\iota_{n}\right]\right\rangle & \text { if } q=n \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The division into cases for $H_{q}\left(S^{n}\right)$ can be eased by employing reduced homology. Then the claim is merely that for $n \geq 0$

$$
\widetilde{H}_{q}\left(S^{n-1}\right)=\left\{\begin{array}{lll}
\mathbf{Z} & \text { if } & q=n-1 \\
0 & \text { if } & q \neq n-1
\end{array}\right.
$$

and the map

$$
\partial: H_{q}\left(D^{n}, S^{n-1}\right) \rightarrow \widetilde{H}_{q-1}\left(S^{n-1}\right)
$$

is an isomorphism. The second statement follows from the long exact sequence in reduced homology together with the fact that $\widetilde{H}_{*}\left(D^{n}\right)=0$ since D^{n} is contractible. The first uses induction and the pair of isomorphisms

$$
\widetilde{H}_{q-1}\left(S^{n-1}\right) \stackrel{\cong}{\leftrightarrows} H_{q}\left(D^{n}, S^{n-1}\right) \stackrel{\cong}{\leftrightarrows} H_{q}\left(D^{n} / S^{n-1}, *\right)
$$

since $D^{n} / S^{n-1} \cong S^{n}$. The right hand arrow is an isomorphism since S^{n-1} is a deformation retract of a neighborhood in D^{n}.

Why should you care about this complicated homology calculation?
Corollary 10.5. If $m \neq n$, then S^{m} and S^{n} are not homotopy equivalent.
Proof. Their homology groups are not isomorphic.
Corollary 10.6. If $m \neq n$, then \mathbf{R}^{m} and \mathbf{R}^{n} are not homeomorphic.
Proof. If m or n is zero, this is clear, so let $m, n>0$. Assume we have a homeomorphism $f: \mathbf{R}^{m} \rightarrow$ \mathbf{R}^{n}. This restricts to a homeomorphism $\mathbf{R}^{m}-\{0\} \rightarrow \mathbf{R}^{n}-\{f(0)\}$. But these spaces are homotopy equivalent to spheres of different dimension.

Theorem 10.7 (Brouwer fixed-point theorem). If $f: D^{n} \rightarrow D^{n}$ is continuous, then there is some point $x \in D^{n}$ such that $f(x)=x$.

Proof. Suppose not. Then you can draw a ray from $f(x)$ through x. It meets the boundary of D^{n} at a point $g(x) \in S^{n-1}$. Check that $g: D^{n} \rightarrow S^{n-1}$ is continuous. If x is on the boundary, then $x=g(x)$, so g provides a factorization of the identity map on S^{n-1} through $D_{\widetilde{H}}{ }^{n}$. This is inconsistent with our computation because the identity map induces the identity map on $\widetilde{H}_{n-1}\left(S^{n-1}\right) \cong \mathbf{Z}$, while $\widetilde{H}_{n-1}\left(D^{n}\right)=0$.

Our computation of the homology of a sphere also implies that there are many non-homotopic self-maps of S^{n}, for any $n \geq 1$. We will distinguish them by means of the "degree": A map $f: S^{n} \rightarrow S^{n}$ induces an endomorphism of the infinite cyclic group $H_{n}\left(S^{n}\right)$. Any endomorphism of an infinite cyclic group is given by multiplication by an integer. This integer is well defined (independent of a choice of basis), and any integer occurs. Thus $\operatorname{End}(\mathbf{Z})=\mathbf{Z}_{\times}$, the monoid of integers under multiplication. The homotopy classes of self-maps of S^{n} also form a monoid, under composition, and:

Theorem 10.8. Let $n \geq 1$. The degree map provides us with a surjective monoid homomorphism

$$
\operatorname{deg}:\left[S^{n}, S^{n}\right] \rightarrow \mathbf{Z}_{\times} .
$$

Proof. Degree is multiplicative by functoriality of homology.
We construct a map of degree k on S^{n} by induction on n. If $n=1$, this is just the winding number; an example is given by regarding S^{1} as unit complex numbers and sending z to z^{k}. The proof that this has degree k is an exercise.

Suppose we've constructed a map $f_{k}: S^{n-1} \rightarrow S^{n-1}$ of degree k. Extend it to a map $\bar{f}_{k}: D^{n} \rightarrow$ D^{n} by defining $\bar{f}_{k}(t x)=t f_{k}(x)$ for $t \in[0,1]$. We may then collapse the sphere to a point and identify the quotient with S^{n}. This gives us a new map $g_{k}: S^{n} \rightarrow S^{n}$ making the diagram below commute.

The horizontal maps are isomorphisms, so $\operatorname{deg} g_{k}=k$ as well.
We will see (in 18.906) that this map is in fact an isomorphism.

MIT OpenCourseWare
https://ocw.mit.edu

18.905 Algebraic Topology I

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

