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be a map of short exact sequences of chain complexes. If two of the three maps induced in homology
by f, g, and h are isomorphisms, then so is the third.

Here’s an application.

Proposition 9.6. Let (A,X)→ (B, Y ) be a map of pairs, and assume that two of A→ B, X → Y ,
and (X,A)→ (Y,B) induce isomorphims in homology. Then the third one does as well.

Proof. Just apply the five lemma to the map between the two homology long exact sequences.

10 Excision and applications

We have found two general properties of singular homology: homotopy invariance and the long
exact sequence of a pair. We also claimed that H∗(X,A) “depends only on X − A.” You have to
be careful about this. The following definition gives conditions that will capture the sense in which
the relative homology of a pair (X,A) depends only on the complement of A in X.

Definition 10.1. A triple (X,A,U) where U ⊆ A ⊆ X, is excisive if U ⊆ Int(A). The inclusion
(X − U,A− U) ⊆ (X,A) is then called an excision.

Theorem 10.2. An excision induces an isomorphism in homology,

H∗(X − U,A− U)
∼=−→ H∗(X,A) .
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So you can cut out closed bits of the interior of A without changing the relative homology. The
proof will take us a couple of days. Before we give applications, let me pose a different way to
interpret the motto “H∗(X,A) depends only on X−A.” Collapsing the subspace A to a point gives
us a map of pairs

(X,A)→ (X/A, ∗) .

When does this map induce an isomorphism in homology? Excision has the following consequence.

Corollary 10.3. Assume that there is a subspace B of X such that (1) A ⊆ IntB and (2) A→ B
is a deformation retract. Then

H∗(X,A)→ H∗(X/A, ∗)

is an isomorphism.

Proof. The diagram of pairs

(X,A)

��

i // (X,B)

��

(X −A,B −A)

k
��

joo

(X/A, ∗) ı // (X/A,B/A) (X/A− ∗, B/A− ∗)oo

commutes. We want the left vertical to be a homology isomorphism, and will show that the rest of
the perimeter consists of homology isomorphisms. The map k is a homeomorphism of pairs while j
is an excision by assumption (1). The map i induces an isomorphism in homology by assumption
(2), the long exact sequences, and the five-lemma. Since I is a compact Hausdorff space, the map
B × I → B/A × I is again a quotient map, so the deformation B × I → B, which restricts to the
constant deformation on A, descends to show that ∗ → B/A is a deformation retract. So the map
ı is also a homology isomorphism. Finally, ∗ ⊆ Int(B/A) in X/A, by definition of the quotient
topology, so  induces an isomorphism by excision.

Now what are some consequences? For a start, we’ll finally get around to computing the ho-
mology of the sphere. It happens simultaneously with a computation of H∗(Dn, Sn−1). (Note that
S−1 = ∅.) To describe generators, for each n ≥ 0 pick a homeomorphism

(∆n, ∂∆n)→ (Dn, Sn−1) ,

and write
ιn ∈ Sn(Dn, Sn−1)

for the corresponding relative n-chain.

Proposition 10.4. Let n > 0 and let ∗ ∈ Sn−1 be any point. Then:

Hq(S
n) =


Z = 〈[∂ιn+1]〉 if q = n > 0

Z = 〈[c0
∗]〉 if q = 0, n > 0

Z⊕ Z = 〈[c0
∗], [∂ι1]〉 if q = n = 0

0 otherwise

and

Hq(D
n, Sn−1) =

{
Z = 〈[ιn]〉 if q = n

0 otherwise .
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Proof. The division into cases for Hq(S
n) can be eased by employing reduced homology. Then the

claim is merely that for n ≥ 0

H̃q(S
n−1) =

{
Z if q = n− 1

0 if q 6= n− 1

and the map
∂ : Hq(D

n, Sn−1)→ H̃q−1(Sn−1)

is an isomorphism. The second statement follows from the long exact sequence in reduced homology
together with the fact that H̃∗(Dn) = 0 since Dn is contractible. The first uses induction and the
pair of isomorphisms

H̃q−1(Sn−1)
∼=←− Hq(D

n, Sn−1)
∼=−→ Hq(D

n/Sn−1, ∗)

since Dn/Sn−1 ∼= Sn. The right hand arrow is an isomorphism since Sn−1 is a deformation retract
of a neighborhood in Dn.

Why should you care about this complicated homology calculation?

Corollary 10.5. If m 6= n, then Sm and Sn are not homotopy equivalent.

Proof. Their homology groups are not isomorphic.

Corollary 10.6. If m 6= n, then Rm and Rn are not homeomorphic.

Proof. If m or n is zero, this is clear, so let m,n > 0. Assume we have a homeomorphism f : Rm →
Rn. This restricts to a homeomorphism Rm−{0} → Rn−{f(0)}. But these spaces are homotopy
equivalent to spheres of different dimension.

Theorem 10.7 (Brouwer fixed-point theorem). If f : Dn → Dn is continuous, then there is some
point x ∈ Dn such that f(x) = x.

Proof. Suppose not. Then you can draw a ray from f(x) through x. It meets the boundary of Dn

at a point g(x) ∈ Sn−1. Check that g : Dn → Sn−1 is continuous. If x is on the boundary, then
x = g(x), so g provides a factorization of the identity map on Sn−1 through Dn. This is inconsistent
with our computation because the identity map induces the identity map on H̃n−1(Sn−1) ∼= Z, while
H̃n−1(Dn) = 0.
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Our computation of the homology of a sphere also implies that there are many non-homotopic
self-maps of Sn, for any n ≥ 1. We will distinguish them by means of the “degree”: A map
f : Sn → Sn induces an endomorphism of the infinite cyclic group Hn(Sn). Any endomorphism
of an infinite cyclic group is given by multiplication by an integer. This integer is well defined
(independent of a choice of basis), and any integer occurs. Thus End(Z) = Z×, the monoid of
integers under multiplication. The homotopy classes of self-maps of Sn also form a monoid, under
composition, and:

Theorem 10.8. Let n ≥ 1. The degree map provides us with a surjective monoid homomorphism

deg : [Sn, Sn]→ Z× .

Proof. Degree is multiplicative by functoriality of homology.
We construct a map of degree k on Sn by induction on n. If n = 1, this is just the winding

number; an example is given by regarding S1 as unit complex numbers and sending z to zk. The
proof that this has degree k is an exercise.

Suppose we’ve constructed a map fk : Sn−1 → Sn−1 of degree k. Extend it to a map fk : Dn →
Dn by defining fk(tx) = tfk(x) for t ∈ [0, 1]. We may then collapse the sphere to a point and
identify the quotient with Sn. This gives us a new map gk : Sn → Sn making the diagram below
commute.

Hn−1(Sn−1)

fk∗
��

Hn(Dn, Sn−1)
∼=oo

∼= //

��

Hn(Sn)

gk∗
��

Hn−1(Sn−1) Hn(Dn, Sn−1)
∼=oo

∼= // Hn(Sn)

The horizontal maps are isomorphisms, so deg gk = k as well.

We will see (in 18.906) that this map is in fact an isomorphism.
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