Coloring knots

A knot is a smooth embedding of a circle into \mathbb{R}^{3}. Two knots are equivalent if one can be deformed to the other smoothly. The knot class of a given knot is the set of knots equivalent to it.

There is a combinatorial way of studying knot equivalence, by taking a knot and projecting to the plane \mathbb{R}^{2}, in such a way that the resulting knot projection has only simple undercrossings. Knots in the same class can have many different projections, but any two are related by a sequence of the following Reidemeister moves:

You should convince yourself that these moves do indeed allow you to move between any two projections of equivalent knots.

The maximal paths not containing any undercrossings are the arcs of the knot projection. A coloring of the projection is a function from the set of arcs to the set \{red, green, blue\}, with the property that, at each crossing, the three arcs meeting there have the same color, or else have all different colors. A coloring is nontrivial if it involves more than just one color. Show that admitting a nontrivial coloring is a knot invariant.

Give some examples: prove that some knots are not equivalent to each other by this method. A main part of the project should be to explore the following question: how does the notion of coloring generalize?

MIT OpenCourseWare
http://ocw.mit.edu

18.821 Project Laboratory in Mathematics

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

