ALGEBRAIC NUMBER THEORY

LECTURE 9 NOTES

1. Secton 4.4

Proof of theorem 1: the bound on α should be $\alpha \geq 2^{n-r_1}(1/2\pi)^{r_2}|d|^{1/2}$.

2. Section 4.6

Solving the Brahmagupta-Pell-Fermat equation:

Write the continued fraction expansion of \sqrt{d} as $[a_0, \overline{a_1, \ldots, a_k, 2a_0}]$. Then the smallest solution to

$$x^2 - dy^2 = \pm 1$$

is (a, b) where $a/b = [a_0, a_1, \dots, a_k]$.

When $d \equiv 2$ or 3 mod 4, this gives a fundamental unit for $\mathbb{Q}(\sqrt{d})$. When $d \equiv 1 \mod 4$, this gives either the fundamental unit or its cube, and one can easily check whether a cube root exists in $\mathbb{Q}(\sqrt{d})$.

For a treatment of continued fractions see the book by Niven and Zuckerman.

3. Section 4.7

Proof of proposition 1: If A is an integral domain and K = Frac(A) has characteristic 0, then Samuel asserts that K is a finite dimensional vector space over \mathbb{Q} . Note that this uses that A is integral over \mathbb{Z} (being a finitely generated module over \mathbb{Z} which is also a ring), which then implies that $K = \mathbb{Q}A \cong \mathbb{Q} \otimes_{\mathbb{Z}} A$. 18.786 Topics in Algebraic Number Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.