ALGEBRAIC NUMBER THEORY

LECTURE 9 NOTES

1. Secton 4.4

Proof of theorem 1: the bound on α should be $\alpha \geq 2^{n-r_{1}}(1 / 2 \pi)^{r_{2}}|d|^{1 / 2}$.
2. Section 4.6

Solving the Brahmagupta-Pell-Fermat equation:
Write the continued fraction expansion of \sqrt{d} as $\left[a_{0}, \overline{a_{1}, \ldots, a_{k}, 2 a_{0}}\right]$. Then the smallest solution to

$$
x^{2}-d y^{2}= \pm 1
$$

is (a, b) where $a / b=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$.
When $d \equiv 2$ or $3 \bmod 4$, this gives a fundamental unit for $\mathbb{Q}(\sqrt{d})$. When $d \equiv 1 \bmod 4$, this gives either the fundamental unit or its cube, and one can easily check whether a cube root exists in $\mathbb{Q}(\sqrt{d})$.

For a treatment of continued fractions see the book by Niven and Zuckerman.

3. Section 4.7

Proof of proposition 1: If A is an integral domain and $K=\operatorname{Frac}(A)$ has characteristic 0 , then Samuel asserts that K is a finite dimensional vector space over \mathbb{Q}. Note that this uses that A is integral over \mathbb{Z} (being a finitely generated module over \mathbb{Z} which is also a ring), which then implies that $K=\mathbb{Q} A \cong \mathbb{Q} \otimes_{\mathbb{Z}} A$.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

