ALGEBRAIC NUMBER THEORY

LECTURE 5 SUPPLEMENTARY NOTES

Material covered: Chapter 3 of textbook.

1. Section 3.3

If $A' \subset A$ and \mathfrak{p} is a prime ideal of A, then $\mathfrak{p}' = \mathfrak{p} \cap A$ is a prime ideal of A', called the *restriction* of \mathfrak{p} to A'.

Lemma 1. Suppose $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}_3$ are ideals of A such that \mathfrak{a}_1 is relatively prime to the other two: $\mathfrak{a}_1 + \mathfrak{a}_i = A$ for i = 2, 3. Then \mathfrak{a}_1 is relatively prime to their product.

Proof. We have $1 = a_1 + a_2$ and $1 = a'_1 + a_3$ for some $a_1, a'_1 \in \mathfrak{a}_1, a_2 \in \mathfrak{a}_2, a_3 \in \mathfrak{a}_3$. Multiplying we get

$$1 = (a_1 + a_2)(a_1' + a_3) = a_1a_1' + a_1a_3 + a_1'a_2 + a_2a_3$$

The first three terms are in \mathfrak{a}_1 and the last is in $\mathfrak{a}_2\mathfrak{a}_3$.

$2. \ \text{Section} \ 3.4$

Proof of Theorem 2: We define $\mathfrak{m}' = \{x \in K \mid x\mathfrak{m} \subset A\}$. This is the *conductor* of \mathfrak{m} into A. This is a natural candidate for the inverse of \mathfrak{m} : suppose that \mathfrak{m} has an inverse fractional ideal \mathfrak{n} . Then for any $x \in \mathfrak{m}'$, we have $x\mathfrak{m} \subset A$, so multiplying by \mathfrak{n} we get $xA = x\mathfrak{m}\mathfrak{n} \subset \mathfrak{n}$, which implies $x \in \mathfrak{n}$ since $1 \in A$. Conversely, by $\mathfrak{n}\mathfrak{m} = A$, we see that \mathfrak{n} is contained in \mathfrak{m}' by definition. So $\mathfrak{m}' = \mathfrak{n}$ if the inverse \mathfrak{n} exists.

The intuition behind the last paragraph of the proof is as follows: we want an element of $K \setminus A$ which takes \mathfrak{m} into A. We transfer this problem by multiplying by $(a)\mathfrak{m}^{-1}$ (which we haven't shown exists) to saying that we want an element which takes (a) into $(a)\mathfrak{m}^{-1}$, where $a \in \mathfrak{m}$ So if we could factor (a) into $\mathfrak{p}_1 \ldots \mathfrak{p}_r$, with say $\mathfrak{p}_1 = \mathfrak{m}$ this would be saying that we want an element in $\mathfrak{p}_2 \ldots \mathfrak{p}_r$ but not in (a), which is what b is (and b/a is the required element of $K \setminus A$ which takes (a) into $\mathfrak{p}_2 \ldots \mathfrak{p}_r$). Since we don't have the factorization theorem into ideals yet, we settle for $(a) \supset \mathfrak{p}_1 \ldots \mathfrak{p}_r$ with r minimal.

Remark. If \mathfrak{p} and \mathfrak{q} are two distinct maximal ideals of a Dedekind domain, then $\mathfrak{p} + \mathfrak{q} = A$ since $\mathfrak{p} + \mathfrak{q}$ contains \mathfrak{p} which is maximal, and doesn't equal it (else $\mathfrak{q} \subset \mathfrak{p}$ contradincting maximality of \mathfrak{q}). So with the lemma above we have that

if $\mathfrak{p}_1, \ldots, \mathfrak{p}_r, \mathfrak{q}_1, \ldots, \mathfrak{q}_s$ are all distinct maximal ideals of the Dedekind domain A, then for any nonnegative integers e_i and f_j

$$\prod_i \mathfrak{p}_i^{e_i} + \prod_j \mathfrak{q}_j^{f_j} = A$$

This leads directly to the proof that $n_{\mathfrak{p}}(\mathfrak{a} + \mathfrak{b}) = \inf(n_{\mathfrak{p}}(\mathfrak{a}), n_{\mathfrak{p}}(\mathfrak{b}).$

18.786 Topics in Algebraic Number Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.