ALGEBRAIC NUMBER THEORY

LECTURE 5 SUPPLEMENTARY NOTES

Material covered: Chapter 3 of textbook.

1. Section 3.3

If $A^{\prime} \subset A$ and \mathfrak{p} is a prime ideal of A, then $\mathfrak{p}^{\prime}=\mathfrak{p} \cap A$ is a prime ideal of A^{\prime}, called the restriction of \mathfrak{p} to A^{\prime}.

Lemma 1. Suppose $\mathfrak{a}_{1}, \mathfrak{a}_{2}, \mathfrak{a}_{3}$ are ideals of A such that \mathfrak{a}_{1} is relatively prime to the other two: $\mathfrak{a}_{1}+\mathfrak{a}_{i}=A$ for $i=2,3$. Then \mathfrak{a}_{1} is relatively prime to their product.

Proof. We have $1=a_{1}+a_{2}$ and $1=a_{1}^{\prime}+a_{3}$ for some $a_{1}, a_{1}^{\prime} \in \mathfrak{a}_{1}, a_{2} \in \mathfrak{a}_{2}, a_{3} \in \mathfrak{a}_{3}$. Multiplying we get

$$
1=\left(a_{1}+a_{2}\right)\left(a_{1}^{\prime}+a_{3}\right)=a_{1} a_{1}^{\prime}+a_{1} a_{3}+a_{1}^{\prime} a_{2}+a_{2} a_{3}
$$

The first three terms are in \mathfrak{a}_{1} and the last is in $\mathfrak{a}_{2} \mathfrak{a}_{3}$.

2. SECTION 3.4

Proof of Theorem 2: We define $\mathfrak{m}^{\prime}=\{x \in K \mid x \mathfrak{m} \subset A\}$. This is the conductor of \mathfrak{m} into A. This is a natural candidate for the inverse of \mathfrak{m} : suppose that \mathfrak{m} has an inverse fractional ideal \mathfrak{n}. Then for any $x \in \mathfrak{m}^{\prime}$, we have $x \mathfrak{m} \subset A$, so multiplying by \mathfrak{n} we get $x A=x \mathfrak{m} \mathfrak{n} \subset \mathfrak{n}$, which implies $x \in \mathfrak{n}$ since $1 \in A$. Conversely, by $\mathfrak{n m}=A$, we see that \mathfrak{n} is contained in \mathfrak{m}^{\prime} by definition. So $\mathfrak{m}^{\prime}=\mathfrak{n}$ if the inverse \mathfrak{n} exists.

The intuition behind the last paragraph of the proof is as follows: we want an element of $K \backslash A$ which takes \mathfrak{m} into A. We transfer this problem by multiplying by $(a) \mathfrak{m}^{-1}$ (which we haven't shown exists) to saying that we want an element which takes (a) into $(a) \mathfrak{m}^{-1}$, where $a \in \mathfrak{m}$ So if we could factor (a) into $\mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$, with say $\mathfrak{p}_{1}=\mathfrak{m}$ this would be saying that we want an element in $\mathfrak{p}_{2} \ldots \mathfrak{p}_{r}$ but not in (a), which is what b is (and b / a is the required element of $K \backslash A$ which takes (a) into $\left.\mathfrak{p}_{2} \ldots \mathfrak{p}_{r}\right)$. Since we don't have the factorization theorem into ideals yet, we settle for $(a) \supset \mathfrak{p}_{1} \ldots \mathfrak{p}_{r}$ with r minimal.

Remark. If \mathfrak{p} and \mathfrak{q} are two distinct maximal ideals of a Dedekind domain, then $\mathfrak{p}+\mathfrak{q}=A$ since $\mathfrak{p}+\mathfrak{q}$ contains \mathfrak{p} which is maximal, and doesn't equal it (else $\mathfrak{q} \subset \mathfrak{p}$ contradincting maximality of \mathfrak{q}). So with the lemma above we have that
if $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}, \mathfrak{q}_{1}, \ldots, \mathfrak{q}_{s}$ are all distinct maximal ideals of the Dedekind domain A, then for any nonnegative integers e_{i} and f_{j}

$$
\prod_{i} \mathfrak{p}_{i}^{e_{i}}+\prod_{j} \mathfrak{q}_{j}^{f_{j}}=A
$$

This leads directly to the proof that $n_{\mathfrak{p}}(\mathfrak{a}+\mathfrak{b})=\inf \left(n_{\mathfrak{p}}(\mathfrak{a}), n_{\mathfrak{p}}(\mathfrak{b})\right.$.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

