
ALGEBRAIC NUMBER THEORY 

LECTURE 12 NOTES 

1. Section 5.5 

Note that τ(1)2 = (−
p 
1) holds in characteristic 0 as well as characteristic q (set 

w = e2πi/p), since it doesn’t use any property of finite fields. It allows us to see 
what the unique quadratic subfield of Q(ζp) is: start with a generator ζp = w 
of Q(ζp) and symmetrize with respect to the unique subgroup of index 2 of the 
Galois group (which is isomorphic to (Z/pZ)∗ under a ∈ (Z/pZ)∗ 7→ (ζp 7→ ζa)p

). The subgroup consists of the squares in (Z/pZ)∗, so the quadratic extension 
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This sum is nonzero since |τ(1)| = 
√

p. So the quadratic subfield in question is 

indeed Q(
�

(−1)p) which is Q(
√

p) if p ≡ 1 mod 4 and Q(
√−p) if p ≡ 3 mod 4. 

p 

We know the Gauss sum up to sign since we know its square. For the compu
tation of the sign see for example Flath’s book on number theory, which has a 
nice proof using the finite Fourier transform. For a good introduction to Gauss 
and Jacobi sums see Ireland and Rosen’s book. 

2. Section 5.6 

To see that if n is a sum of two squares then every prime which is 3 mod 
4 divides n to an even power we argue by contradiction. Let n be a smallest 
counterexample and let p ≡ 3 mod 4 divide n to an odd power. Write n = a2 +b2 

and notice that p cannot divide a or b since then it would have to divide both 
(sum of their squares is divisible by p), and then n/p2 = (a/p)2 + (b/p)2 would 
furnish a smaller counterexample. So p 6 | b in particular, and so (ab−1)2 ≡ −1 
mod p, which contradicts p ≡ 3 mod 4. 

3. Section 5.7 

Proof of four squares theorem. By multiplicativity of quaternion norms, it’s enough 
to see that every prime is a sum of four squares. Since this is trivial for 2, assume 
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p is an odd prime. Now, the Chevalley-Warning theorem shows that for every p, 
there are integers a, b such that a2 + b2 + 1 ≡ 0 mod p. So let’s assume we have 

2 2 2 2 x + y + z + w = mp 

for some positive integer m. We can reduce x, y, z, w mod p to assume their 
absolute values are less than p/2 (since p is odd). Then the LHS is less than 
4(p/2)2 = p2, so m < p. If m = 1 we are done. So assume m > 1. We 
will then produce another solution with smaller m. Since there are only finitely 
many positive integers less than m, eventually we will reach m = 1. Now if 
x, y, z, w are all divisible by m then we get after dividing my m2 that p/m = 
(x/m)2 + (y/m)2 + (z/m)2 + (w/m)2 . But the RHS is an integer and the LHS is 
not, since 1 < m < p, so that’s impossible. 

′ ′ ′ ′ So reduce x, y, z, w mod m to get x , y , z , w with absolute values less than 
or equal to m/2. We then have x ′2 + y ′2 + z ′2 + w ′2 x2 + y2 + z2 + w2 0 

′2 + ′2 + ′2 2 
≡ ≡

mod m. Also x ′2 + y z w ≤ 4(m/2)2 = m . In fact we can assume that 
′ ′ ′ ′ strict inequality holds, since if m is even and x , y , z , w all have absolute value 

m/2, then they are all ±m/2 and so are congruent mod m to m/2. Hence so are 
x, y, z, w, so in particular x, y, z, w are all even or all odd. Then we can replace 
x, y, z, w by (x + y)/2, (x − y)/2, (z + w)/2, (z −w)/2 and whose sum of squares 
is just (x2 + y2 + z2 + w2)/2 = (m/2)p to reduce m. So now we can assume that 
x ′2 + y ′2 + z ′2 + w ′2 = km with 0 < k < m and with x ≡ x ′ mod m etc. 

′ Then letting u = x + yi + zj + wk and v = x + y ′ i + z ′ j + w ′ k we have 
N(u) = pm, N(v) = N(v) = km, so N(uv) = pkm2 . But also uv ≡ vv mod 
m ≡ km ≡ 0. Hence the components of uv are all divisible by m. So we can 
divide out the representation as a sum of four squares pkm2 = N(uv) by m2 to 
get pk = sum of four squares. This completes the descent step and shows we can 
achieve m = 1 ultimately, which implies p is a sum of four squares. � 

Problem. What’s the fastest algorithm you can think of for expressing a given 
integer as a sum of four squares? 

Remark. If we start counting the number of representations of n as a sum of four 
squares, this leads us naturally to modular forms. 

For example, define r4(n) by 

9 n(1 + 2q + 2q 4 + 2q + . . . )4 = 
�

r4(n)q . 

Then it’s easy to see that r4(n) is the number of representations of n as a sum 
of four integer squares (positive or negative). 

Now θ = (1 + 2q + 2q4 + 2q9 + . . . ) is the theta function of the integer lattice 
Z. If we plug in q = e2πiz it becomes a function of a complex variable z. Usually 
we let z ∈ H, the upper half complex plane {x + iy | y > 0}. 
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2πinz So let ϑ4(z) = 
�

r4(n)e . Then ϑ4 is clearly unchanged under z 7→ z + 1. 
But ϑ4 satisfies another transformation property: 

� 
1
� 

−
z 

= −z 2ϑ4(z).ϑ4 

We won’t prove it here, but it follows by using the Poisson summation formula:

�

f(x) = 
1 �

f�(y)
vol(Λ) 

x∈Λ y∈Λ∗ 

for any Schwarz function f on Rn where f� is the Fourier transform, defined by 
2πitxdx.f�(t) = 

� 
Rn f(x)e

These two transformation properties are enough to make ϑ4 into a modular 
form for the group SL2(Z) of weight 2. It lies in the finite dimensional space of 
modular forms of weight 2 for SL2(Z). We can arguments from the theory of 
modular forms to show, for instance, that 

r4(n) = 8 
� 

d 
d|n,46 |d 

For an introduction to modular forms, see Serre’s “A course in arithmetic”. 

Remark. A famous theorem of Hurwitz states that the only normed algebras 
over R are R, the complex numbers C, the Hamiltonian quaternions H, and the 
octonions or Cayley numbers O. For the proof see Conway and Smith’s book “On 
quaternions and octonions” or the book “Numbers” by Eddbinghaus. Hurwitz 
also showed that if K is a field of characteristic not equal to 2, then the only 
values of n for which there is an identity of the type 

(x1
2 + + x 2 )(y1

2 + + y 2) = z1
2 + + z 2 · · · n · · · n · · · n 

where the zk are bilinear functions of the xi and the yj with coefficients in K are 
n = 1, 2, 4, 8. 

But surprisingly, in 1967, Pfister showed that there is such an expression if n is 
any power of 2 and we allow Zk to be linear functions of the Yj with coefficients in 
the rational function field K(X1, . . . , Xn). In particular, the product of a sume of 
n squares turns out to be a sum of n squares. Conversely, if n is not a power of 2, 
then there can be no such general identity with Zk ∈ K(X1, . . . , Xn, Y1, . . . , Yn). 
This is a consequence of Pfister’s beautiful theory of multiplicative forms. 
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