ALGEBRAIC NUMBER THEORY

LECTURE 12 NOTES

1. Section 5.5

Note that $\tau(1)^{2}=\left(\frac{-1}{p}\right)$ holds in characteristic 0 as well as characteristic q (set $\left.w=e^{2 \pi i / p}\right)$, since it doesn't use any property of finite fields. It allows us to see what the unique quadratic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ is: start with a generator $\zeta_{p}=w$ of $\mathbb{Q}\left(\zeta_{p}\right)$ and symmetrize with respect to the unique subgroup of index 2 of the Galois group (which is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{*}$ under $a \in(\mathbb{Z} / p \mathbb{Z})^{*} \mapsto\left(\zeta_{p} \mapsto \zeta_{p}^{a}\right)$). The subgroup consists of the squares in $(\mathbb{Z} / p \mathbb{Z})^{*}$, so the quadratic extension is generated by $\sum_{a \in\left(\mathbb{F}_{p}^{*}\right)^{2}} \zeta_{p}^{a^{2}}$ if the sum is nonzero. This sum equals

$$
\sum_{a \in \mathbb{F}_{p}^{*}} \frac{1}{2}\left(1+\left(\frac{a}{p}\right)\right) \zeta_{p}^{a}=-\frac{1}{2}+\frac{1}{2} \sum_{a \in \mathbb{F}_{p}^{*}}\left(\frac{a}{p}\right) \zeta_{p}^{a}=\frac{\tau(1)-1}{2} .
$$

This sum is nonzero since $|\tau(1)|=\sqrt{p}$. So the quadratic subfield in question is indeed $\mathbb{Q}\left(\sqrt{\left(\frac{-1}{p}\right) p}\right)$ which is $\mathbb{Q}(\sqrt{p})$ if $p \equiv 1 \bmod 4$ and $\mathbb{Q}(\sqrt{-p})$ if $p \equiv 3 \bmod 4$.

We know the Gauss sum up to sign since we know its square. For the computation of the sign see for example Flath's book on number theory, which has a nice proof using the finite Fourier transform. For a good introduction to Gauss and Jacobi sums see Ireland and Rosen's book.

2. SECTION 5.6

To see that if n is a sum of two squares then every prime which is $3 \bmod$ 4 divides n to an even power we argue by contradiction. Let n be a smallest counterexample and let $p \equiv 3 \bmod 4$ divide n to an odd power. Write $n=a^{2}+b^{2}$ and notice that p cannot divide a or b since then it would have to divide both (sum of their squares is divisible by p), and then $n / p^{2}=(a / p)^{2}+(b / p)^{2}$ would furnish a smaller counterexample. So $p \not X b$ in particular, and so $\left(a b^{-1}\right)^{2} \equiv-1$ $\bmod p$, which contradicts $p \equiv 3 \bmod 4$.

3. Section 5.7

Proof of four squares theorem. By multiplicativity of quaternion norms, it's enough to see that every prime is a sum of four squares. Since this is trivial for 2 , assume
p is an odd prime. Now, the Chevalley-Warning theorem shows that for every p, there are integers a, b such that $a^{2}+b^{2}+1 \equiv 0 \bmod p$. So let's assume we have

$$
x^{2}+y^{2}+z^{2}+w^{2}=m p
$$

for some positive integer m. We can reduce $x, y, z, w \bmod p$ to assume their absolute values are less than $p / 2$ (since p is odd). Then the LHS is less than $4(p / 2)^{2}=p^{2}$, so $m<p$. If $m=1$ we are done. So assume $m>1$. We will then produce another solution with smaller m. Since there are only finitely many positive integers less than m, eventually we will reach $m=1$. Now if x, y, z, w are all divisible by m then we get after dividing my m^{2} that $p / m=$ $(x / m)^{2}+(y / m)^{2}+(z / m)^{2}+(w / m)^{2}$. But the RHS is an integer and the LHS is not, since $1<m<p$, so that's impossible.

So reduce $x, y, z, w \bmod m$ to get $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ with absolute values less than or equal to $m / 2$. We then have $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2} \equiv x^{2}+y^{2}+z^{2}+w^{2} \equiv 0$ $\bmod m$. Also $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2} \leq 4(m / 2)^{2}=m^{2}$. In fact we can assume that strict inequality holds, since if m is even and $x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ all have absolute value $m / 2$, then they are all $\pm m / 2$ and so are congruent $\bmod m$ to $m / 2$. Hence so are x, y, z, w, so in particular x, y, z, w are all even or all odd. Then we can replace x, y, z, w by $(x+y) / 2,(x-y) / 2,(z+w) / 2,(z-w) / 2$ and whose sum of squares is just $\left(x^{2}+y^{2}+z^{2}+w^{2}\right) / 2=(m / 2) p$ to reduce m. So now we can assume that $x^{\prime 2}+y^{\prime 2}+z^{\prime 2}+w^{\prime 2}=k m$ with $0<k<m$ and with $x \equiv x^{\prime} \bmod m$ etc.

Then letting $u=x+y i+z j+w k$ and $v=x^{\prime}+y^{\prime} i+z^{\prime} j+w^{\prime} k$ we have $N(u)=p m, N(v)=N(\bar{v})=k m$, so $N(u \bar{v})=p k m^{2}$. But also $u \bar{v} \equiv v \bar{v} \bmod$ $m \equiv k m \equiv 0$. Hence the components of $u \bar{v}$ are all divisible by m. So we can divide out the representation as a sum of four squares $p k m^{2}=N(u \bar{v})$ by m^{2} to get $p k=$ sum of four squares. This completes the descent step and shows we can achieve $m=1$ ultimately, which implies p is a sum of four squares.

Problem. What's the fastest algorithm you can think of for expressing a given integer as a sum of four squares?

Remark. If we start counting the number of representations of n as a sum of four squares, this leads us naturally to modular forms.

For example, define $r_{4}(n)$ by

$$
\left(1+2 q+2 q^{4}+2 q^{9}+\ldots\right)^{4}=\sum r_{4}(n) q^{n}
$$

Then it's easy to see that $r_{4}(n)$ is the number of representations of n as a sum of four integer squares (positive or negative).

Now $\theta=\left(1+2 q+2 q^{4}+2 q^{9}+\ldots\right)$ is the theta function of the integer lattice \mathbb{Z}. If we plug in $q=e^{2 \pi i z}$ it becomes a function of a complex variable z. Usually we let $z \in \mathcal{H}$, the upper half complex plane $\{x+i y \mid y>0\}$.

So let $\vartheta_{4}(z)=\sum r_{4}(n) e^{2 \pi i n z}$. Then ϑ_{4} is clearly unchanged under $z \mapsto z+1$. But ϑ_{4} satisfies another transformation property:

$$
\vartheta_{4}\left(-\frac{1}{z}\right)=-z^{2} \vartheta_{4}(z)
$$

We won't prove it here, but it follows by using the Poisson summation formula:

$$
\sum_{x \in \Lambda} f(x)=\frac{1}{\operatorname{vol}(\Lambda)} \sum_{y \in \Lambda^{*}} \widehat{f}(y)
$$

for any Schwarz function f on \mathbb{R}^{n} where \widehat{f} is the Fourier transform, defined by $\widehat{f}(t)=\int_{\mathbb{R}^{n}} f(x) e^{2 \pi i t x} d x$.

These two transformation properties are enough to make ϑ_{4} into a modular form for the group $S L_{2}(\mathbb{Z})$ of weight 2 . It lies in the finite dimensional space of modular forms of weight 2 for $S L_{2}(\mathbb{Z})$. We can arguments from the theory of modular forms to show, for instance, that

$$
r_{4}(n)=8 \sum_{d \mid n, 4 \nmid d} d
$$

For an introduction to modular forms, see Serre's "A course in arithmetic".
Remark. A famous theorem of Hurwitz states that the only normed algebras over \mathbb{R} are \mathbb{R}, the complex numbers \mathbb{C}, the Hamiltonian quaternions \mathbb{H}, and the octonions or Cayley numbers \mathbb{O}. For the proof see Conway and Smith's book "On quaternions and octonions" or the book "Numbers" by Eddbinghaus. Hurwitz also showed that if K is a field of characteristic not equal to 2 , then the only values of n for which there is an identity of the type

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=z_{1}^{2}+\cdots+z_{n}^{2}
$$

where the z_{k} are bilinear functions of the x_{i} and the y_{j} with coefficients in K are $n=1,2,4,8$.

But surprisingly, in 1967, Pfister showed that there is such an expression if n is any power of 2 and we allow Z_{k} to be linear functions of the Y_{j} with coefficients in the rational function field $K\left(X_{1}, \ldots, X_{n}\right)$. In particular, the product of a sume of n squares turns out to be a sum of n squares. Conversely, if n is not a power of 2, then there can be no such general identity with $Z_{k} \in K\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$. This is a consequence of Pfister's beautiful theory of multiplicative forms.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

