ALGEBRAIC NUMBER THEORY

LECTURE 1 SUPPLEMENTARY NOTES

Material covered: Sections 1.1 through 1.3 of textbook.

1. Section 1.1

Recall that to an integral domain A we can associate its field of fractions $K=\operatorname{Frac}(A)=\left\{\frac{a}{b}: b \neq 0\right\}$. More formally, $K=\{(a, b): a, b \in A, b \neq 0\} / \sim$, where \sim is the equivalence relation $(a, b) \sim(c, d)$ iff $a d-b c=0$ (i.e. " $\frac{a}{b}=\frac{c}{d}$ ").

A general fractional ideal \mathfrak{f} of A is a subset of $K=\operatorname{Frac}(A)$ such that
(1) $a f \in \mathfrak{f} \forall a \in A, f \in \mathfrak{f}$
(2) $f_{1}+f_{2} \in \mathfrak{f} \forall f_{1}, f_{2} \in \mathfrak{f}$
(3) $\exists c \in A$ such that $c f$ is an ideal of A.

A non-example of a fractional ideal is the set K : it satisfies the first two properties but not the third one in general: the problem is that we have inverted "too many" elements.

Example. Some principal ideal domains (PIDs):
(1) \mathbb{Z} is a PID (any nonzero ideal is a subgroup, so is generated by a smallest positive element).
(2) For a field k, the ring of univariate polynomials $k[X]$ is a PID (take a lowest degree element).

Some examples of non-PIDs:
Example. (1) $\mathbb{Z}[\sqrt{-5}]$ is not a PID because of the failure of unique factorization $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. The ideal $(2,1+\sqrt{5})$ is not a principal ideal.

Proof. (of Thm 1.1.IV) Let P be a set of representatives of the irreducible elements of A, modulo units (recall that this means $p \in A$ is a prime/irreducible if p is not a unit and $p=x y$ implies x or y is a unit). Then given any $x \in K^{*}$ we want to show that x can be uniquely written expressed as

$$
x=u \prod_{p \in P} p^{v_{p}(x)}
$$

First show existence of factorization. Uniqueness will follow from lemma III of Section 1.1. For existence, we can assume $x \in A$ since we can write $x=x_{1} / x_{2}$ and express $x_{1}, x_{2} \in A$ in this form, and divide. So now assume $x \in A$. Then $x A$ is an ideal of A. If it is the entire ring A, then x is a unit and we are done. Else it is contained in a maximal ideal $p A$ for some prime p. Then $p \mid x$ so write $x=x_{1} p$. Again if $x_{1} A=A$ we are done. Else find a prime dividing x_{1} and so on. So this gives us a sequence of elements $x=x_{0}, x_{1}, x_{2}, \ldots$ where $x_{i+1}=x_{i} / p_{i}$ for some prime p_{i}. Then the sequence of ideals $\mathfrak{a}_{i}=x_{i} A$ is increasing. The set $\bigcup \mathfrak{a}_{i}$ is an ideal of A, hence it is generated by one element, say y. Then y lies in some \mathfrak{a}_{N} and this means that the sequence must terminate at \mathfrak{a}_{N}, i.e. x_{n} is a unit. So a finite factorization exists.

2. SECTION 1.2

Solving Pythagoras' equation geometrically.
Write the equation as $X^{2}+Y^{2}=1$, where $X=x / z, Y=y / z$. It is sufficient to find all rational solutions of this equation. Now we know one point on this circle, for example $P_{0}=(-1,0)$. For any other point with rational coordinates, it's clear that the slope of the line joining it to P_{0} must be rational (the converse is also not too hard to see). So write

$$
X=-1+\frac{Y}{m}
$$

and plug into the equation to get

$$
\left(-1+\frac{Y}{m}\right)^{2}+Y^{2}=1
$$

which leads to the solution $Y=2 m /\left(m^{2}+1\right), X=\left(1-m^{2}\right) /\left(1+m^{2}\right)$.
Section 1.3 is the Chinese remainder theorem for general rings.

3. GP/PARI EXAMPLE

Example. G = bnfclassunit($\mathrm{x}^{\wedge} 2+5$)
This G contains lots of arithmetic information. For instance $G[2,1]=[0,1]$ gives the number of real and complex embeddings of the number field. $G[5,1][1]$ is the class number of the field $\mathbb{Q}(\sqrt{-5})$ which is $2 . G[5,2]$ gives the structure of the class group in terms of its elementary divisors. Here it has to be $\mathbb{Z} / 2$. Finally, $G[5,1][3]$ gives the generators of the cyclic components. Here we get a matrix with colums $[2,0]$ and $[1,1]$ which means that the ideal is $(2,1+\sqrt{5})$.

MIT OpenCourseWare
http://ocw.mit.edu

18.786 Topics in Algebraic Number Theory

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

