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ALGEBRAIC NUMBER THEORY 

LECTURE 1 SUPPLEMENTARY NOTES 

Material covered: Sections 1.1 through 1.3 of textbook. 

1. Section 1.1 

Recall that to an integral domain A we can associate its field of fractions 
K = Frac(A) = {a

b : b =6 0}. More formally, K = {(a, b) : a, b ∈ A, b =6 0}
c 
/ ∼, 

where ∼ is the equivalence relation (a, b) ∼ (c, d) iff ad − bc = 0 (i.e. “ a = ”). 
b d 

A general fractional ideal f of A is a subset of K = Frac(A) such that 

(1) af ∈ f ∀a ∈ A, f ∈ f 
(2) f1 + f2 ∈ f ∀f1, f2 ∈ f 
(3) ∃c ∈ A such that cf is an ideal of A. 

A non-example of a fractional ideal is the set K: it satisfies the first two 
properties but not the third one in general: the problem is that we have inverted 
“too many” elements. 

Example. Some principal ideal domains (PIDs): 

(1) Z is a PID (any nonzero ideal is a subgroup, so is generated by a smallest 
positive element). 

(2) For a field k, the ring of univariate polynomials k[X] is a PID (take a 
lowest degree element). 

Some examples of non-PIDs: 

Example. (1) Z[
√
−5] is not a PID because of the failure of unique factoriza

tion 2 3 = (1 +
√
−5)(1−

√
−5). The ideal (2, 1 +

√
5) is not a principal · 

ideal. 

Proof. (of Thm 1.1.IV) Let P be a set of representatives of the irreducible ele
ments of A, modulo units (recall that this means p ∈ A is a prime/irreducible if 
p is not a unit and p = xy implies x or y is a unit). Then given any x ∈ K∗ we 
want to show that x can be uniquely written expressed as 

vp(x)x = u p 
p∈P 
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First show existence of factorization. Uniqueness will follow from lemma III 
of Section 1.1. For existence, we can assume x ∈ A since we can write x = x1/x2 

and express x1, x2 A in this form, and divide. So now assume A. Then ∈ x ∈
xA is an ideal of A. If it is the entire ring A, then x is a unit and we are done. 
Else it is contained in a maximal ideal pA for some prime p. Then p x so write |
x = x1p. Again if x1A = A we are done. Else find a prime dividing x1 and so 
on. So this gives us a sequence of elements x = x0, x1, x2, . . . where xi+1 = xi/pi 

for some prime pi. Then the sequence of ideals ai = xiA is increasing. The set 
� 

ai is an ideal of A, hence it is generated by one element, say y. Then y lies 
in some aN and this means that the sequence must terminate at aN , i.e. xn is a 
unit. So a finite factorization exists. 

2. Section 1.2 

Solving Pythagoras’ equation geometrically. 
Write the equation as X2 + Y 2 = 1, where X = x/z, Y = y/z. It is sufficient 

to find all rational solutions of this equation. Now we know one point on this 
circle, for example P0 = (−1, 0). For any other point with rational coordinates, 
it’s clear that the slope of the line joining it to P0 must be rational (the converse 
is also not too hard to see). So write 

Y 
X = −1 + 

m 
and plug into the equation to get 

� �2
Y −1 + + Y 2 = 1 
m 

which leads to the solution Y = 2m/(m2 + 1), X = (1 − m2)/(1 + m2). 

Section 1.3 is the Chinese remainder theorem for general rings. 

3. gp/Pari example 

Example. G = bnfclassunit(x^2+5) 
This G contains lots of arithmetic information. For instance G[2, 1] = [0, 1] 

gives the number of real and complex embeddings of the number field. G[5, 1][1] 
is the class number of the field Q(

√
−5) which is 2. G[5, 2] gives the structure 

of the class group in terms of its elementary divisors. Here it has to be Z/2. 
Finally, G[5, 1][3] gives the generators of the cyclic components. Here we get a 
matrix with colums [2, 0] and [1, 1] which means that the ideal is (2, 1 +

√
5). 
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