
LECTURE 9

Hilbert’s Theorem 90 and Cochain Complexes

As always, G = Z/nZ and L/K is a Galois extension of local fields with
Gal(L/K) = G and generator σ ∈ G. In the last lecture, we showed:

Theorem 9.1. χ(L×) = n, where χ denotes the Herbrand quotient.

Note that our methods actually generalize easily to the non-archimedean case.
In this lecture, we will show:

Theorem 9.2 (Hilbert’s Theorem 90). Ĥ1(G,K×) = 0.

Together, these imply that Ĥ0(G,L×) = K×/N(L×) has cardinality n. An-
other corollary of Hilbert’s Theorem 90 is that if L and K are finite fields, then
Ĥi(G,L×) = 0 for all i, because χ(L×) = 1 as L is finite (so all cohomologies vanish
by periodicity). This is similar to the first result in [Wei74]. Explicitly, we have

Ĥ1(G,L×) = Ker(N: L× → K×)/{y/σy : y ∈ L×},
where each element y/σy has norm 1 as y/σy · σy/σ2y · · ·σn−1y/σny = 1. Then
Hilbert’s Theorem 90 implies the following:

Corollary 9.3. If L/K is a cyclic extension, and x ∈ L× with N(x) = 1,
then x = y/σy for some y ∈ L×.

Example 9.4. Let L := Q(i) and K := Q. Choose x ∈ Q(i) with N(x) = 1.
Then x = a/c + (b/c)i for some a, b, c ∈ Z satisfying a2 + b2 = c2. Then Hilbert’s
Theorem 90 yields the usual parametrization of Pythagorean triples, (r − s)2 +
(2rs)2 = (r + s)2.

For n = 2, the proof is simple. We have N(x) = x · σx = 1, so if we let
y := x + 1 when x 6= −1, then x · σy = x(σx + 1) = N(x) + x = 1 + x = y, hence
x = y/σy as desired. If x = −1, then let y :=

√
d, where L = K(

√
d), then again

we have y/σy =
√
d/(−

√
d) = −1 = x. Note that this completes the proof that

#(K×/NL×) = 2 for a quadratic extension L/K of local fields, and thus of the
good properties of Hilbert symbols! Indeed, recall that, for a field L := K(

√
a)

with a ∈ K× but not a square, then (a, b) = 1 if and only if b ∈ N(L×).
We now move on to the general case of Hilbert’s Theorem 90. Here’s the main

lemma:

Lemma 9.5. For each x ∈ L, let
Hx : L→ L, y 7→ x · σ(y),

which is a linear map of K-vector spaces. Then the characteristic polynomial of Hx

is tn − N(x) ∈ K[t], where we have normalized the definition of the characteristic
polynomial to be monic.
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Note that this characteristic polynomial is simpler than that of y 7→ xy, which
will have a nonzero multiple of tn−1 as long as the T(x) 6= 0, which will occur when
the trace is nondegenerate (which is true of any separable extension).

Proof (9.5 =⇒ 9.2). Let x ∈ L, and assume N(x) = 1. Then the character-
istic polynomial of Ĥx is tn − 1, implying 1 is a root and hence an eigenvalue of
Hx. Thus, Ker((Hx − 1) ⊗K K) 6= 0, so since for fields tensor products commute
with taking kernels, we have Ker(Hx − 1) 6= 0. Thus, there exists some y ∈ L×

such that Hx(y) = x · σ(y) = y, that is, x = y/σy, as desired. �

Proof (of Lemma). First observe that Hn
x corresponds to multiplication by

N(x), since

Hn
x (y) = x · σ(x · σ(x · · ·σ(y))) = x · σ(x) · σ2(x) · · ·σn−1(x) · σn(y) = N(x)y

for any y ∈ L. It follows that the minimal polynomial of Hx divides tn − N(x).
Now, recall that the minimal polynomial of a linear operator T always divides
its characteristic polynomial, which has degree n, so showing that they are equal
suffices. Thus is true if and only if there are no blocks with shared eigenvalues in
the Jordan decomposition of T , which is true if and only if dimK(Ker(T −λI)) ≤ 1,
for all λ ∈ K.

Here’s a proof that doesn’t quite work. Suppose that Hx(y1) = λy1, Hx(y2) =
λy2, and y1, y2 6= 0 (so that the two are “honest eigenvalues”). We’d like to show
that y2 is a multiple of y1, that is, y2/y1 ∈ K, i.e., is fixed by Gal(L/K). Indeed,
we have

σy2

σy1
=

1
xλy2

1
xλy1

=
y2

y1
,

since σy2 = Hx(y2)/x, and similarly for y1. However, the issue is that this proof
occurred in L, and not K, which is where our eigenvalues actually live! Thus, we
need to work in L⊗K K '

∏
g∈GK, which is not necessarily a field.

We can compute the characteristic polynomial after extension of scalars. Recall
that

L⊗K K
∼−→

n−1∏
i=0

K, a⊗ b 7→ ((σia) · b)n−1
i=0 .

This extends non-canonically to an automorphism of K, but otherwise everything
is canonical, with the group acting on the set of coordinates by left multiplication.
The map

σ ⊗ id : L⊗K K → L⊗K K

corresponds to permuting the coordinates, and we have a map

µx ⊗ id : L⊗K K → L⊗K K, (y0, . . . , yn−1) 7→ (xy0, (σx)y1, . . . , (σ
n−1x)yn−1),

where µx denotes multiplication by x. Now, say λ ∈ K is an eigenvalue of Hx with
corresponding eigenvector (y0, . . . , yn−1). Then

Hx(y) = (xy1, (σx)y2, (σ
2x)y3, . . . , (σ

n−1x)y0) = (λy0, λy1, λy2, . . . , λyn−1),

and so xy1 = λy0, implying y1 = (λ/x)y0, and similarly y2 = (λ/σx)y1 = (λ2/(x ·
σx))y0. In general, we have

yi =
λi

x · · ·σi−1x
y0,
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so all coordinates are uniquely determined by y0, i.e.,

(y0, . . . , yn−1) = y0

(
1,
λ

x
,
λ2

x · σx
, . . . ,

λn−1∏n−2
i=0 σ

ix

)
.

So indeed, our eigenspaces each only have dimension one, as desired. Note that this
only defines an eigenvector if

λn

x · · ·σn−1x
=

λn

N(x)
= 1,

that is, if λn = N(x), which is consistent with what we expected (and all nth roots
appear with multiplicity one). �

Now, we recall that our goal was to show that for an abelian extension L/K of
local fields,

K×/NL× ' Gal(L/K)

canonically (in a strong sense). We’ve shown thatK×/NL× has the right order, but
we’ll prove this generally for non-cyclic groups using cohomology. We now introduce
the language of homological algebra, which will be central to our approach.

Definition 9.6. A (cochain) complex X of abelian groups is a sequence

· · · → X−1 d−1

−−→ X0 d0−→ X1 d1−→ · · · ,
such that the differential satisfies di+1di = 0 for each i.

Notation 9.7. We often refer to the entire complex as X•, where the ‘•’ is in
the location of the indices. We will also often omit indices, e.g. by writing d for di
and d · d = d2 = 0. Note that some authors write Hi := H−i, and similarly for Xi,
so that the differential lowers degree. Our convention, however, is that differentials
raise degree.

Definition 9.8. The ith cohomology group is Hi(X) := Ker(di)/ Im(di−1).

These are, in fact, the invariants we are after, but X is a “richer” object, so it
is better to pass to cohomology at the very end of our processes. We now introduce
the important idea of a null-homotopy of a map of chain complexes.

Definition 9.9. A map f such that the diagram

· · · X−1 X0 X1 · · ·

· · · Y −1 Y 0 Y 1 · · ·

d−1

f−1

d0

f0 f1

d−1 d0

commutes is a map of complexes. Note that f induces a map of cohomologies
because both the kernel and image of the differentials in X• are preserved in Y •

by commutativity. A map h as in the following diagram

· · · X−1 X0 X1 · · ·

· · · Y −1 Y 0 Y 1 · · ·

d−1

f−1

d0

f0h0

f1h1

d−1 d0

such that dh + hd = f , or more precisely, dihi+1 + hidi+1 = f i+1 for each i, is a
null-homotopy of f .
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Lemma 9.10. If f is null-homotopic, then the induced map on cohomology

Hi(X)
Hi(f)−−−−→ Hi(Y ) is zero for all i.

Proof. Let x ∈ Xi such that dx = 0. Then f(x) = (dh + hd)(x) = d(h(x)),
so f(x) ∈ Im(di−1), and hence f(x) = 0 in Hi(Y ). �

Now, our guiding principal here is that for algebra, isomorphism is a much
better notion than equality, which refers to sets without structure. Thus, if f ' g,
i.e., f is homotopic to g by which we mean that there exists a null-homotopy of
f − g, then no test of actual mathematics can distinguish f and g anymore.

We’d like to define some notion of “cokernel” for a map of complexes. A bad
idea is, for a map f : X → Y of complexes, to form Coker(f). A better idea is the
following:

Definition 9.11. The homotopy cokernel or cone hCoker(f) = Cone(f) has
the universal property that maps of chain complexes hCoker(f)→ Z are equivalent
to maps Y → Z along with the data of a null-homotopy of X → Z, which we note
yields the following commutative diagram:

X Z

Y.

f

Note the similarity with the universal property of an ordinary cokernel.
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