LECTURE 8

Tate Cohomology and Inverse Limits

Recall that, for an extension L/K of local fields with Galois group $G := \mathbb{Z}/n\mathbb{Z}$, we were trying to show that $\#\hat{H}^0(G, L^{\times}) = n$. We claimed that $\chi(L^{\times}) = n$ if and only if $\chi(\mathcal{O}_L^{\times}) = 1$, where χ denotes the Herbrand quotient $\#\hat{H}^0/\#\hat{H}^1$ and we recall that a finite group has Herbrand quotient equal to 1 and that χ is multiplicative for short exact sequences.

Last time, we proved $\chi(\mathcal{O}_L) = 1$, using the normal basis theorem to show that $L \simeq K[G]$, that \mathcal{O}_L contains a finite-index open subgroup Γ such that $\mathcal{O}_L^{\times} \supset \Gamma \simeq \mathcal{O}_L^+$ via *G*-equivalence (so that Γ is closed under the *G*-action), and that $\mathcal{O}_K[G] \simeq \Gamma \subseteq \mathcal{O}_L$. We then used Claim 7.10 to show that $\hat{H}^i(G,\Gamma) = 0$ for each *i*, hence $\chi(\mathcal{O}_L) = \chi(\Gamma) = 1$.

Now we'd like to give a better, i.e., more algebraic (without *p*-adic exponentials!), proof that $\chi(\mathcal{O}_L^{\times}) = 1$. So fix some open subgroup $\Gamma \subseteq \mathcal{O}_L$ isomorphic to $\mathcal{O}_K[G]$ (as $\mathcal{O}_K[G]$ -modules).

CLAIM 8.1. For sufficiently large N, $1 + \mathfrak{p}_K^N \Gamma$ is a subgroup of \mathcal{O}_L^{\times} , where \mathfrak{p}_K is the maximal ideal of \mathcal{O}_K .

PROOF. For $x, y \in \Gamma \subseteq \mathcal{O}_L$, we have

(8.1)
$$(1+\pi^N x)(1+\pi^N y) = 1 + \underbrace{\pi^N(x+y)}_{\in \mathfrak{p}_K^N \Gamma} + \underbrace{\pi^{2N}(xy)}_{\in \mathfrak{p}_K^2 \mathcal{N} \mathcal{O}_L},$$

where π is a uniformizer of \mathfrak{p}_K . Thus, if we choose N large enough that $\mathfrak{p}_K^N \mathcal{O}_L \subseteq \Gamma$, which is possible because Γ is an open subgroup of \mathcal{O}_L , this product will be in $1 + \pi^N \Gamma$ and therefore $1 + \mathfrak{p}_K^N \Gamma$ will be a subgroup of \mathcal{O}_L^{\times} . \Box

CLAIM 8.2. The cohomologies of Γ all vanish.

Choose N such that $\mathfrak{p}_K^N \mathcal{O}_L \subseteq \mathfrak{p}_K \Gamma$. Then the last term in (8.1) is in $\mathfrak{p}_K^{2N} \mathcal{O}_L \subseteq \mathfrak{p}_K^{N+1}\Gamma$. This suggests that we ought to filter $1 + \mathfrak{p}_K^N\Gamma$ with additive subquotients, that is, by $1 + \mathfrak{p}_K^{N+i}\Gamma$, so that

$$(1 + \mathfrak{p}_K^{N+i}\Gamma)/(1 + \mathfrak{p}_K^{N+i+1}\Gamma) \simeq \Gamma/\mathfrak{p}_K\Gamma \simeq k_K[G]$$

for all $i \geq 0$ as additive groups by the above calculation, where k_K denotes the residue field of K. Moreover, these isomorphisms are *Galois-equivariant*, or *G*-equivariant, as the *G*-action preserves all terms (Γ is preserved by assumption), hence acts on both sides, and is preserved by the isomorphism. Thus, by Claim 7.10,

$$\hat{H}^j(G,(1+\mathfrak{p}_K^{N+i}\Gamma)/(1+\mathfrak{p}_K^{N+i+1}\Gamma))=\hat{H}^j(G,k_K[G])=0,$$

for each $i \ge 0$ and j. As a corollary, for which we need the following lemma,

(8.2)
$$\hat{H}^{j}(G,(1+\mathfrak{p}_{K}^{N}\Gamma)/(1+\mathfrak{p}_{K}^{N+i}\Gamma))=0$$

for all $i \ge 0$ and j.

LEMMA 8.3. For any short exact sequence

$$0 \to M \to E \to N \to 0$$

of G-modules, $\hat{H}^i(G,M) = \hat{H}^i(G,N) = 0$ implies $\hat{H}^i(G,E) = 0$ for each i.

PROOF. By (6.4), we have an exact sequence

$$\underbrace{\hat{H}^i(G,M)}_{0} \xrightarrow{\alpha} \hat{H}^i(G,E) \xrightarrow{\beta} \underbrace{\hat{H}^i(G,N)}_{0},$$

hence $\hat{H}^{i}(E) = \text{Ker}(\beta) = \text{Im}(\alpha) = 0$, as desired.

Now, we have an exact sequence

$$0 \to \frac{1 + \mathfrak{p}_K^{N+i}\Gamma}{1 + \mathfrak{p}_K^{N+i+1}\Gamma} \to \frac{1 + \mathfrak{p}_K^N\Gamma}{1 + \mathfrak{p}_K^{N+i+1}\Gamma} \to \frac{1 + \mathfrak{p}_K^N\Gamma}{1 + \mathfrak{p}_K^{N+i}\Gamma} \to 0,$$

so (8.2) follows by induction on i and Lemma 8.3.

It remains to show that $\hat{H}^{j}(1 + \mathfrak{p}^{N}\Gamma) = 0$. In a perfect world, we would have

$$\hat{H}^{j}(G, \varprojlim_{n} M_{n}) = \varprojlim_{n} \hat{H}^{j}(G, M_{n})$$

for any sequence of modules with a G-action and G-equivariant structure maps. Thus would then imply

$$\begin{aligned} \hat{H}^{j}(1+\mathfrak{p}_{K}^{N}\Gamma) &= \hat{H}^{j}\left(\lim_{i\geq 0}(1+\mathfrak{p}_{K}^{N}\Gamma)/(1+\mathfrak{p}_{K}^{N+i}\Gamma)\right) \\ &= \lim_{i\geq 0}\hat{H}^{j}((1+\mathfrak{p}_{K}^{N}\Gamma)/(1+\mathfrak{p}_{K}^{N+i}\Gamma)) \\ &= \lim_{i\geq 0}0 \\ &= 0 \end{aligned}$$

by (8.2), as our filtration is complete. Thus, we need to find some way to justify commuting Tate cohomologies and inverse limits.

LEMMA 8.4. Suppose we have a sequence of modules

with exact rows. Then we have an exact sequence

$$0 \to \varprojlim_n M_n \xrightarrow{\varphi} \varprojlim_n E_n \xrightarrow{\psi} \varprojlim_n N_n.$$

Moreover, if $M_n \to M_{n+1}$ is surjective for each n, then ψ is as well (otherwise, it may not be!).

PROOF. Evidently, φ is injective, as if $x \in \text{Ker}(\varphi)$, then each coordinate of its image is 0, so by compatibility and injectivity of $M_n \to E_n$ for each n, each coordinate of x is 0, hence x = 0. Similarly, $\text{Ker}(\psi) = \text{Im}(\varphi)$ by exactness of each row in (8.3).

To see (intuitively) how surjectivity of ψ can fail, consider a compatible system $(x_n) \in \varprojlim_n N_n$. We can lift each x_n to some $y_n \in E_n$, but it is unclear how to do it compatibly, so that $(y_n) \in \varprojlim_n E_n$.

Now assume that that each of the maps $M_n \to M_{n+1}$ is surjective. Let $(x_n) \in \lim_{n \to \infty} N_n$, and suppose we have constructed $y_n \in E_n$ for some n. Choose any $\tilde{y}_{n+1} \mapsto x_{n+1}$ via the map $E_{n+1} \to N_{n+1}$, and let α_{n+1} be the image of \tilde{y}_{n+1} in E_n . Then $y_n - \alpha_{n+1} \in M_n$ as it vanishes in N_n , and it lifts to $\beta_{n+1} \in M_{n+1}$ by assumption. If we now define $y_{n+1} := \tilde{y}_{n+1} + \beta_{n+1}$, then this maps to $\alpha_{n+1} + y_n - \alpha_{n+1} = y_n$ in E_n and to x_{n+1} in N_{n+1} as β_{n+1} maps to 0 in N_{n+1} , hence by induction there exists a compatible system $(y_n) \in \varprojlim_n E_n$ mapping to (x_n) via ψ , as desired (note that we may express this result as a surjection $E_{n+1} \to E_n \times_{N_n} N_{n+1}$, i.e., to the fibre product)..

PROPOSITION 8.5. If

$$(8.4) \qquad \cdots \twoheadrightarrow M_{n+1} \twoheadrightarrow M_n \twoheadrightarrow \cdots \twoheadrightarrow M_0$$

is a sequence of G-modules, and $\hat{H}^i(M_{n+1}) \twoheadrightarrow \hat{H}^i(M_n)$ for all n and i, then

$$\hat{H}^{i}(\varprojlim_{n} M_{n}) = \varprojlim_{n} \hat{H}^{i}(M_{n})$$

for all i.

PROOF. We provide a proof for \hat{H}^0 . Let $M := \varprojlim_n M_n$, so that we are comparing $\hat{H}^0(M) = M^G/\mathcal{N}(M)$ and $\varprojlim_n \hat{H}^0(M_n) = \varprojlim_n M_n^G/\mathcal{N}(M_n)$. This amounts to showing that the natural map

$$(\varprojlim_n M_n^G) / (\varprojlim_n \mathcal{N}(M_n)) \xrightarrow{\sim} \varprojlim_n (M_n^G / \mathcal{N}(M_n))$$

is an isomorphism. We have a commutative diagram

and we claim that α_n is surjective for each n. Indeed, let $x \in \mathcal{N}(M_n)$, so that $x = \mathcal{N}(y)$ for some $y \in M_n$. Lifting y to an element $z \in M_{n+1}$, we have $\alpha_n(\mathcal{N}(z)) = x$,

as desired. Thus, by Lemma 8.4, we have

$$\lim_{n} \hat{H}^{0}(M_{n}) = (\lim_{n} M_{n}^{G}) / (\lim_{n} \mathcal{N}(M_{n}))$$

Now, we have

$$\hat{H}^{0}(\varprojlim_{n} M_{n}) = (\varprojlim_{n} M_{n})^{G} / \mathrm{N}(\varprojlim_{n} M_{n}) = M^{G} / \mathrm{N}(M).$$

It is clear that $(\varprojlim_n M_n)^G = \varprojlim_n M_n^G$, since G acts on each of the coordinates of $\varprojlim_n M_n$, so it remains to show that $N(\varprojlim_n M_n) \xrightarrow{\sim} \varprojlim_n N(M_n)$. Letting $K_n := \operatorname{Ker}(N: M_n \to M_n)$ for each n, we have a commutative diagram

We'd like to show that β_n is surjective. Recall that $\hat{H}^1(G, M_n) = K_n/(1 - \sigma)M_n$, and thus we have a commutative diagram

Now, γ_n is surjective (the proof is similar to that for α_n), and δ_n is surjective by hypothesis. Thus, β_n is surjective by the Snake Lemma, and so Lemma 8.4 implies

$$\varprojlim_n \mathcal{N}(M_n) = (\varprojlim_n M_n) / (\varprojlim_n K_n) = \mathcal{N}(\varprojlim_n M_n).$$

It follows that $\hat{H}^0(\varprojlim_n M_n) = \varprojlim_n \hat{H}^0(M_n)$, as desired. \Box

COROLLARY 8.6. For a sequence (8.4), if $\hat{H}^i(M_n) = 0$ for all n and i, then $\hat{H}^i(\varprojlim_n M_n) = 0$. In particular, $\hat{H}^i(1 + \mathfrak{p}_K^N \Gamma) = 0$, where we have set $M_i := (1 + \mathfrak{p}_K^N \Gamma)/(1 + \mathfrak{p}_K^{N+i} \Gamma)$ for each i.

It follows that, since $1 + \mathfrak{p}_K^N \Gamma \subseteq \mathcal{O}_L^{\times}$ is a (additive, with a normal basis) finiteindex subgroup, we have $\chi(\mathcal{O}_L^{\times}) = \chi(1+\mathfrak{p}_K^N) = 1$, which establishes (2) of Claim 7.8. MIT OpenCourseWare https://ocw.mit.edu

18.786 Number Theory II: Class Field Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.