
LECTURE 3 

Norm Groups with Tame Ramification 

Let K be a field with char(K) 6= 2. Then 

K×/(K×)2 ' {continuous homomorphisms Gal(K) → Z/2Z} 
' {degree 2 étale algebras over K} 

which is dual to our original statement in Claim 1.8 (this result is a baby instance 
of Kummer theory). Note that an étale algebra over K is either K × K or a √ 
quadratic extension K( d)/K; the former corresponds to the trivial coset of squares 
in K×/(K×)2, and the latter to the coset defined by d ∈ K× . dIf K is local, then lcft says that Galab(K) ' K× canonically. Combined (as 
such homomorphisms certainly factor through Galab(K)), we obtain thatK×/(K×)2 

is finite and canonically self-dual. This is equivalent to asserting that there exists 
a “suÿciently nice” pairing 

(·, ·) : K×/(K×)2 × K×/(K×)2 → {1, −1}, 
that is, one which is bimultiplicative, satisfying 

(a, bc) = (a, b)(a, c), (ab, c) = (a, c)(b, c), 

and non-degenerate, satisfying the condition 

if (a, b) = 1 for all b, then a ∈ (K×)2 . 

We were able to give an easy definition of this pairing, namely, 
2(a, b) = 1 ⇐⇒ ax + by2 = 1 has a solution in K. 

Note that it is clear from this definition that (a, b) = (b, a), but unfortunately 
neither bimultiplicativity nor non-degeneracy is obvious, though we will prove that 
they hold in this lecture in many cases. We have shown in Claim 2.11 that a less 
symmetric definition of the Hilbert symbol holds, namely that for all a, 

√ 
(a, b) = 1 ⇐⇒ b is a norm in K( a)/K = K[t]/(t2 − a), 

which if a is a square, is simply isomorphic to K × K and everything is a norm. 
At the end of Lecture 2, we made the following claim, and remarked that it was 
important that this subgroup of norms was “not too big” (not everything) and “not 
too small,” and that K be local. 

Claim 3.1. These “good properties,” i.e., bimultiplicativity and non-degeneracy, 
hold for the Hilbert symbol if and only if, for all quadratic extensions L/K, N(L×) ⊆ 
K× is a subgroup of index 2, that is, K×/N(L×) = Z/2Z. 

Proof. Assume that for all degree two extensions L/K, we have NL× ⊆ K× 

a subgroup of index 2. Let a ∈ K×. We’d like to show that 

(3.1) (a, ·) : K× → {1, −1} 
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11 3. NORM GROUPS WITH TAME RAMIFICATION 

is a homomorphism, which is equivalent to the first equation of bimultiplicativity 
(the other follows by symmetry). If a is a square, then this is clear because its√
image is identically 1 (we may let (x, y) = (1/ a, 0)). If a is not a square, then √ 
let L := K( a); by Claim 2.11, we know that (a, b) = 1 if and only if b ∈ N(L×). 
Now, the Hilbert symbol with a factors as 

K× � K×/NL× ' {1, −1}, 

where the isomorphism is canonical because both groups have order 2; we are using 
the fact that the group of norms has index 2 to construct the final bijection of 
order-2 groups preserving the identity, since otherwise the quotient would be too 
big. The projection is trivially a homomorphism. 

Now, to show non-degeneracy, let a /∈ (K×)2. Then there exists some b ∈ K× 
√ 

which is not a norm from L := K( a), which is true if and only if (a, b) = −1, so 
non-degeneracy holds by contrapositive. 

To show the converse, observe that if a ∈/ (K×)2, then the map in (3.1) is 
surjective by non-degeneracy, and a homomorphism by bimultiplicativity. Hence√ 
its kernel, which is N(K( a)×) ⊆ K×, must have index #{1, −1} = 2. � 

Example 3.2. Again, the basic case is C/R, where the group of norms is just 

K

R, which has index 2. 

Now it remains to show the following: 

Theorem 3.3. If L/K is a quadratic extension of local fields with char(K) = 26 , 
then NL× ⊆ K× is a subgroup of index 2. 

Note that the following proof does not cover the ramified case in residual char-
acteristic 2. 

√ 
Proof. Let L := K( d) (where d is as a was before), so that L only depends 

on d up to multiplication by squares. Then we have two cases: where v(d) = 0, 
which is true if and only if O× , and where v(d) = 1, which is true if and only if 

K

d is a uniformizer (as we can repeatedly cancel factors of π2; note here v is the 
valuation as usual). √ 

d ∈ O×Case 1. Here d is a square, and . This extension is not necessarily 

KL

unramified, but we’ll only do the unramified case and leave the ramified case for√ √ √ 
next week. An example of ramification is Q2( 3)/Q2 (or Q2( 2), Q2( −1), etc.); √ 
the extension Q2( 5)/Q2 is unramified. We need the following: 

N(O×) = O×Claim 3.4. , and more generally, x ∈ K× is a norm if and only 

L

if v(x) is even (so uniformizers in K are not norms). 

Proof. We make use of the “filtration trick.” We have the following filtrations, 
which are preserved by the norm homomorphism: 

O× ×⊇ 1 + pL ⊇ 1 + p ⊇ · · · L

K

N NN 

O× ⊇ 1 + pK ⊇ 1 + p × 
K ⊇ · · · . 
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On the associated graded terms, we first have 

Since we are in the unramified case, kL/kK is a degree-two extension like L/K. To 
show that the norm map is surjective on the associated graded terms, we can show 
that it is surjective on the residue fields, that is: 

Claim 3.5. The norm map 

N: F× 
q2 → F× 

q , x 7→ xq+1 = Frob(x) · x, 
qis surjective (note that since Gal(Fq2 /Fq) ' Z/2Z, x 7→ x is an automorphism 

fixing Fq ; in a Galois extension, the field norm is defined as the product of all 
Galois conjugates of an element). 

Proof 1. The unit group of a finite field must be cyclic, so the map corre-
sponds to 

Z/(q 2 − 1)Z → Z/(q − 1)Z ⊆ (q 2 − 1)Z, n 7→ (q + 1)n. 

� 
√ √ 

Proof 2 (for p 6 q , then x = N( −x), and −x ∈ F× 
q2= 2). If x ∈ F× since 

Fq2 is the unique degree two extension of Fq. � 

2 − 1, #F× 

1) = q + 1, but the polynomial xq+1 − 1 has exactly q + 1 roots in Fq since Fq2 /Fq 

is a separable extension (finite fields are perfect). � 

Thus, the map on the first associated graded term Gr0 is surjective. On subse-
quent terms, we have 

Proof 3. We have #F× 
q2 = q q = q − 1, and #Ker(N) ≤ (q2 − 1)/(q − 

n n+1 N n n+1(1 + pL)/(1 + pL ) (1 + pK )/(1 + pK ) 

T 

To check that this diagram commutes, note that because we have assumed that L/K 
is unramified, π is also a uniformizer of L (for instance Qp( 

√ 
p)/Qp is a ramified 

extension, and p is no longer a uniformizer of Qp( 
√ 
p)). Thus, under the norm map, 

we have 
N

1+ aπn 7−→ (1 + aπn)(1 + σaπn) = 1+(a + σa)πn + aσaπ2n ≡ 1+Taπn mod πn+1 . 

Again, we make the following claim: 

Claim 3.6. The trace map 
qT: Fq2 → Fq, x 7→ x + x = x + Frob(x) 

is surjective. 

Proof 1. The kernel of the trace map corresponds to the roots of the Artin– 
qSchreier polynomial x + x, which is separable, and therefore has q roots, implying 

#Ker(T) = q and #Coker(T) = q2/q = q = #Fq. � 

O× 
L /(1 + pL) O× 

K /(1 + pK ) 

k× 
L k× 

K . 

N 

N 

kL kK . 
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Proof 2. If q is prime to 2, then for any x ∈ Fq, we have x = T(x/2) (proceed 
2as above). Otherwise, if q = 2r, then over F2, x + x + 1 is the only monic 

irreducible polynomial, and F4 is the splitting field of this polynomial. In general, 
2for the extension F2n+1 /F2n , the splitting polynomial is x +x+α, where we choose 

some α for which it’s irreducible. This works for precisely half of the choices for α 
because the additive homomorphism 

2x7→x +xF2n −−−−−−→ F2n 

has kernel F2, and therefore its image is of index 2. Any root of these polynomials 
will have trace 1, since they are monic, and to get an element of any other trace, 
simply multiply by any element of F2n (as the trace map is F2n -linear). � 

Proof 3. The trace map on an extension L/K is surjective if and only if the 
extension is separable, which is true in this case because finite fields are perfect. � 

Thus, since both the trace and norm maps are surjective for finite fields, the 
norm map is surjective on all associated graded terms, which by Proposition 2.9, 
implies that the norm map is surjective on O× , which proves the claim. �L 

Now, to complete the proof of Case 1, we’d like to show that x ∈ K× is a norm 
if and only if its valuation is even. To this end, observe that for any y ∈ L×, we 
have N(y) = y · σy, and v(yσ(y)) = 2v(y), since Gal(L/K) preserves valuations. 
For the converse direction, simply note that π2 is a norm. Hence if v(d) = 0, then 
NL× ⊆ K× is a subgroup of index 2, as desired. 

Case 2. Here v(d) = 1, and again, char(K) 6 2.= This ensures tame ramifi-
cation, since we are working with a quadratic extension (the ramification index is 
not divisible by p; we will handle the wildly ramified case (where it is divisible by 
p) in the next lecture. We claim that N(O×) ⊆ O× has index 2 (explicitly, thatL K 
N(O×) = (O× )2), and there exists some π ∈ OK that is both a uniformizer and aL K 
norm. Clearly, this suÿces to show that the group of norms of L× has index 2 in 
K× . √ 

Let L := K( d), where v(d) = 1 and thus d is not a square. Then N(α +√ √ 
β d) = α2 − dβ2, and if x ∈ (O× )2, then x ∈ N( x), so x is a norm. Conversely,K 

v(α2 − dβ2) = 0 = min{v(α2), v(β2 + 1)} = v(α2), 

since the former is even and the latter odd, hence the two are unequal. It follows 
that α, β ∈ O× , so x = α2 − dβ2 is a square mod p, and this is true if and onlyK √ 
if x is a square in O× Finally, since −d = N( d), it follows that there exists a 
uniformizer of K that is a norm. 

K . 
√ 

So the upshot is that x ∈ K× is a norm for K( d) if and only if (−d)−v(x)x, 
an integral unit, is a square mod p, so the theorem holds in this case. � 

We conclude that we can treat the case of tame ramification (which, for our 
purposes, includes the unramified case) by guessing explicitly what NL× ⊆ K× is. 
Wild ramification is much trickier. All of this amounts to explicit formulae for the 
Hilbert symbol, as we saw on Problem 2 of Problem Set 1. There is also such a 
formula for Q2, and with elbow grease, we can prove that all “good” properties of 
the Hilbert symbol hold in this case (see for instance [Ser73]). 
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