## LECTURE 23

## Proof of the Second Inequality

Our goal for this lecture is to prove the "second inequality": that for all extensions $E / F$ of global fields, we have $H^{1}\left(G, C_{E}\right)=0$, where $C_{E}:=\mathbb{A}_{E}^{\times} / E^{\times}$is the "idèle class group" of $E$. Our main case is when $E / F$ is cyclic of order $p$, and $\zeta_{p} \in F$ for some primitive $p$ th root of unity $\zeta_{p}$, and we will reduce to this case at the end of the lecture (note that $\operatorname{char}(F)=0$ as we are assuming that $F$ is a number field).
In this case, it suffices to show that

$$
\# \hat{H}^{0}\left(C_{E}\right)=\#\left(C_{F} / \mathrm{N} C_{E}\right)=\#\left(\mathbb{A}_{F}^{\times} / F^{\times} \cdot \mathrm{N}\left(\mathbb{A}_{E}^{\times}\right)\right) \leq p
$$

Indeed, by the "first inequality," we know that

$$
\frac{\# \hat{H}^{0}\left(C_{E}\right)}{\# \hat{H}^{1}\left(C_{E}\right)}=p
$$

hence $p \cdot \# \hat{H}^{1}\left(C_{E}\right)=\# \hat{H}^{0}\left(C_{E}\right) \leq p$ implies $\# H^{1}\left(C_{E}\right)=1$, as desired. Our approach will be one of "trial and error"- that is, we'll try something, which won't quite be good enough, and then we'll correct it.

Fix, once and for all, a finite set $S$ of places of $F$ such that
(1) if $v \mid \infty$, then $v \in S$;
(2) if $v \mid p$, then $v \in S$;
(3) $\mathbb{A}_{F}^{\times}=F^{\times} \cdot \mathbb{A}_{F, S}^{\times}$, where we recall that

$$
\mathbb{A}_{F, S}^{\times}:=\prod_{v \in S} F_{v}^{\times} \times \prod_{v \notin S} \mathcal{O}_{F_{v}}^{\times}
$$

and that this is possible by Lemma 20.12;
(4) $E=F(\sqrt[p]{u})$, for some $u \in \mathcal{O}_{F, S}^{\times}:=F^{\times} \cap \mathbb{A}_{F, S}^{\times}$are the " $S$-units" of $F$. This is possible by Kummer Theory.
Note that this last condition implies that $E$ is unramified outside of $S$, as $u$ is an integral element in any place $v \notin S$, and since $p$ is prime to the order of the residue field of $F_{v}$ as all places dividing $p$ are in $S$ by assumption, $F_{v}(\sqrt[p]{u}) / F_{v}$ is an unramified extension.

An important claim, to be proved later in a slightly more refined form, is the following:

Claim 23.1. $u \in \mathcal{O}_{F, S}^{\times}$is a pth power if and only if its image in $F_{v}^{\times}$is a pth power for each $v \in S$.

Let

$$
\Gamma:=\prod_{v \in S}\left(F_{v}^{\times}\right)^{p} \times \prod_{v \notin S} \mathcal{O}_{F_{v}}^{\times} \subseteq \mathbb{A}_{F, S}^{\times}
$$

Then we have the following claims:
CLAIM 23.2. $\mathcal{O}_{F, S}^{\times} \cap \Gamma=\left(\mathcal{O}_{F, S}^{\times}\right)^{p}$.

Proof. This follows trivially from the previous claim.
Claim 23.3. $\Gamma \subseteq \mathrm{N}\left(\mathbb{A}_{E}^{\times}\right)$.
Proof. The extension $E / F$ is unramified at each $v \notin S$, hence the factor $\prod_{v \notin S} \mathcal{O}_{F_{v}}^{\times} \subseteq \mathrm{N}\left(\mathbb{A}_{E}^{\times}\right)$. Since $p$ kills $\hat{H}^{0}\left(E_{w}^{\times}\right)$, for a choice of $w \mid v$, it follows that the factor $\prod_{v \in S}\left(F_{v}^{\times}\right)^{p} \subseteq \mathrm{~N}\left(\mathbb{A}_{E}^{\times}\right)$as well.

Thus,

$$
\#\left(\mathbb{A}_{F}^{\times} / F^{\times} \cdot \mathrm{N}\left(\mathbb{A}_{E}^{\times}\right)\right) \leq \#\left(\mathbb{A}_{F}^{\times} / F^{\times} \cdot \Gamma\right)
$$

and we have a short exact sequence

$$
1 \rightarrow \mathcal{O}_{F, S}^{\times} /\left(\mathcal{O}_{F, S}^{\times} \cap \Gamma\right) \rightarrow \mathbb{A}_{F, S}^{\times} / \Gamma \rightarrow \mathbb{A}_{F}^{\times} /\left(F^{\times} \cdot \Gamma\right) \rightarrow 1
$$

Indeed, the third map is surjective by property (3) of $S$ above, the second map is injective as $\mathcal{O}_{F, S}^{\times} \subseteq F^{\times}$, and exactness at $\mathbb{A}_{F, S}^{\times} / \Gamma$ holds by definition. Thus,

$$
\#\left(\mathbb{A}_{F}^{\times} / F^{\times} \cdot \Gamma\right)=\frac{\#\left(\mathbb{A}_{F, S}^{\times} / \Gamma\right)}{\#\left(\mathcal{O}_{F, S}^{\times} / \mathcal{O}_{F, S}^{\times} \cap \Gamma\right)},
$$

and it remains to compute both the numerator and denominator of this expression. We have

$$
\mathbb{A}_{F, S}^{\times} / \Gamma=\prod_{p \in S} F_{v}^{\times} /\left(F_{v}^{\times}\right)^{p}
$$

and we recall from (6.3) that

$$
\#\left(F_{v}^{\times} /\left(F_{v}^{\times}\right)^{p}\right)=\frac{p \cdot \# \mu_{p}\left(F_{v}\right)}{|p|_{v}}=\frac{p^{2}}{|p|_{v}}
$$

as $\zeta_{p} \in F$ by assumption. Thus,

$$
\prod_{v \in S} \frac{p^{2}}{|p|_{v}}=p^{2 \cdot \# S}
$$

by the product rule, as $|p|_{v}=1$ for $v \notin S$ by assumption. Now we'd like to compute

$$
\#\left(\mathcal{O}_{F, S}^{\times} / \mathcal{O}_{F, S}^{\times} \cap \Gamma\right)=\#\left(\mathcal{O}_{F, S}^{\times} /\left(\mathcal{O}_{F, S}^{\times}\right)^{p}\right)
$$

Recall that, by the $S$-unit theorem,

$$
\mathcal{O}_{F, S}^{\times} \simeq \mathbb{Z}^{\# S-1} \times\left(\mathcal{O}_{F, S}^{\times}\right)_{\mathrm{tors}}
$$

The latter is cyclic, and has order divisible by $p$, hence

$$
\#\left(\mathcal{O}_{F, S}^{\times} /\left(\mathcal{O}_{F, S}^{\times}\right)^{p}\right)=p^{\# S-1} \cdot p=p^{\# S}
$$

Combining these two results, we obtain

$$
\# \hat{H}^{0}\left(C_{E}\right) \leq \frac{p^{2 \cdot \# S}}{p^{\# S}}=p^{\# S}
$$

which is unfortunately not good enough.
Here is how we will improve on this result:
Claim 23.4. Given such a set $S \subseteq M_{F}$, there exists a set $T \subseteq M_{F}$ such that
(1) $\# T=\# S-1$;
(2) $S \cap T=\varnothing$;
(3) every $v \in T$ is split in $E$, i.e., $E_{w}=F_{v}$ for all $w \mid v$;
(4) any $u \in \mathcal{O}_{F, S \cup T}^{\times}$is a pth power if and only if $u \in F_{v}^{\times}$is a pth power for all $v \in S$.

Note the key difference here from earlier: in property (4), we do not require that $u \in\left(F_{v}^{\times}\right)^{p}$ for all $v \in S \cup T$, merely for all $v \in S$. Given such a $T$, we redefine $\Gamma$ by

$$
\Gamma:=\prod_{v \in S}\left(F_{v}^{\times}\right)^{p} \times \prod_{v \in T} F_{v}^{\times} \times \prod_{v \notin S \cup T} \mathcal{O}_{F_{v}} .
$$

Claim 23.5. $\Gamma \subseteq \mathrm{N}\left(\mathbb{A}_{E}^{\times}\right)$.
Proof. Property (3) implies the claim for the second factor; the first and third follow as before.

Redoing our calculations with $\mathbb{A}_{F, S \cup T}^{\times}$instead of $\mathbb{A}_{F, S}^{\times}$, we obtain

$$
\#\left(\mathbb{A}_{F, S \cup T}^{\times} / \Gamma\right)=p^{2 \cdot \# S}
$$

as before by property (4), and

$$
\#\left(\mathcal{O}_{F, S \cup T}^{\times} /\left(\mathcal{O}_{F, S \cup T}^{\times} \cap \Gamma\right)\right)=p^{\#(S \cup T)}=p^{2 \cdot \# S-1}
$$

again as before, hence their quotient is $p$, as desired! Thus, it suffices to prove the claim above.

Claim 23.6. For any abelian extension $F^{\prime} / F$ of global fields, the Frobenius elements for $v \notin S$ generate $\operatorname{Gal}\left(F^{\prime} / F\right)$.

We'd like to prove this purely algebraically, without the Chebotarev density theorem (which, anyhow, gives a slightly different statement).

Proof. Let $H$ be the subgroup generated by all Frobenii for $v \notin S$, and let $F^{\prime \prime}:=\left(F^{\prime}\right)^{H}$ be the fixed field. We'd like to show that $F^{\prime \prime}=F$. Note that Frob ${ }_{v}$ is trivial in $\operatorname{Gal}\left(F^{\prime} / F\right) / H=\operatorname{Gal}\left(F^{\prime \prime} / F\right)$ for all $v \notin S$, hence every $v \notin S$ splits in $F^{\prime \prime} / F$ (as they are unramified by assumption). Thus, $F_{w}^{\prime \prime}=F_{v}$ for all $w \mid v$ and $v \notin S$, and we claim that this is impossible.

We may assume that $F^{\prime \prime} / F$ is a degree- $n$ cyclic extension (replacing it by a smaller extension if necessary). By the first inequality, $\chi\left(C_{F^{\prime \prime}}\right)=n$, which gives

$$
\#\left(\mathbb{A}_{F}^{\times} / \mathrm{N}\left(\mathbb{A}_{F^{\prime \prime}}^{\times}\right) \cdot F^{\times}\right)=\# \hat{H}^{0}\left(C_{F^{\prime \prime}}\right) \geq n
$$

But because this extension is split for all $v \notin S$, we have $\mathrm{N}\left(\left(F_{v}^{\prime \prime}\right)^{\times}\right)=F_{v}^{\times}$trivially, and therefore $\prod_{v \notin S} F_{v}^{\times} \subseteq \mathrm{N}\left(\mathbb{A}_{F^{\prime \prime}}^{\times}\right)$, where this is the restricted direct product. Strong approximation then gives that $F^{\times} \cdot \prod_{v \notin S} F_{v}^{\times}$is dense in $\mathbb{A}_{F}^{\times}$, and since it is also open, this is a contradiction unless $n=1$, as desired.

We'd like to apply this claim for $F^{\prime}:=F\left(\left\{\sqrt[p]{u}: u \in \mathcal{O}_{F, S}^{\times}\right\}\right)$. First, a claim:
Claim 23.7. $\operatorname{Gal}\left(F^{\prime} / F\right)=(\mathbb{Z} / p \mathbb{Z})^{\# S}$, for $F^{\prime}$ as above.
Proof. This is, in essence, Kummer theory, as $\mathcal{O}_{F, S}^{\times} /\left(\mathcal{O}_{F, S}^{\times}\right)^{p} \subseteq F^{\times} /\left(F^{\times}\right)^{p}$. We know that all exponent- $p$ extensions of $F$ are given by adjoining $p$ th roots of elements of $F^{\times}$. The Galois group must be a product of copies of $\mathbb{Z} / p \mathbb{Z}$, but some of these subgroups may coincide - iterated application of Kummer theory gives the statement.

Now, we have $F^{\prime} / E / F$, as $E / F$ was assumed to be obtained by adjoining the $p$ th root of some $S$-unit. Choose places $w_{1}, \ldots, w_{\# S-1}$ of $E$ that do not divide any places of $S$, whose Frobenii give a basis for $\operatorname{Gal}\left(F^{\prime} / E\right) \simeq(\mathbb{Z} / p \mathbb{Z})^{\# S-1}$, which is possible by the argument of Claim 23.6. Then let $T:=\left\{v_{1}, \ldots, v_{\# S-1}\right\}$ be the restrictions of the $w_{i}$ to $F$.

Claim 23.8. Each $v \in T$ is split in $E$.
Proof. Since $\operatorname{Frob}_{v} \in \operatorname{Gal}\left(F^{\prime} / E\right)$, it acts trivially on $E$, so $\operatorname{Gal}\left(E_{w} / F_{v}\right)$ is trivial for any $w \mid v$, as desired.

This establishes condition (3) for $T$; it remains to show condition (4), as conditions (1) and (2) are implicit in the construction of $T$.

Claim 23.9. An element $x \in \mathcal{O}_{F, S \cup T}^{\times}$is a pth power if and only if $x \in\left(F_{v}^{\times}\right)^{p}$ for every $v \in S$.

Proof. Step 1. We claim that

$$
\mathcal{O}_{F, S}^{\times} \cap\left(E^{\times}\right)^{p}=\left\{x \in \mathcal{O}_{F, S}^{\times}: x \in\left(F_{v}^{\times}\right)^{p} \text { for all } v \in T\right\}
$$

The forward inclusion is trivial as $\left(F_{v}^{\times}\right)^{p}=\left(E_{w}^{\times}\right)^{p}$ by the previous claim. For the converse, note that for any $x \in \mathcal{O}_{F, S}^{\times}$, we have an extension $F^{\prime} / E(\sqrt[p]{x}) / E$. If $x \in\left(E_{w}^{\times}\right)^{p}$ for each $w \mid v$ and $v \in T$, then this extension is split at $w$, so Frob $_{w}$ acts trivially on $E(\sqrt[p]{x})$, hence $\operatorname{Gal}\left(F^{\prime} / E\right)$ acts trivially on $E(\sqrt[p]{x})$ as it is generated by these Frobenii, hence $E(\sqrt[p]{x})=E$ and $x \in\left(E^{\times}\right)^{p}$ as desired.

Step 2. Now we claim that the canonical map

$$
\mathcal{O}_{F, S}^{\times} \xrightarrow{\varphi} \prod_{v \in T} \mathcal{O}_{F_{v}}^{\times} /\left(\mathcal{O}_{F_{v}}^{\times}\right)^{p}
$$

is surjective. This is the step that really establishes the limit on the size of $T$ from which the second inequality falls out perfectly. We will proceed by computing the orders of both sides. By Step 1, we have

$$
\operatorname{Ker}(\varphi)=\left\{x \in \mathcal{O}_{F, S}^{\times}: x \in\left(E^{\times}\right)^{p}\right\}
$$

Then $\mathcal{O}_{F, S}^{\times} / \operatorname{Ker}(\varphi)$ has order $p^{\# S-1}$. Indeed, we computed earlier that $\mathcal{O}_{F, S}^{\times} /\left(\mathcal{O}_{F, S}^{\times}\right)^{p}$ has order $p^{\# S}$, and since

$$
\left(\mathcal{O}_{F, S}^{\times}\right)^{p}=\left\{x \in \mathcal{O}_{F, S}^{\times}: x \in\left(F^{\times}\right)^{p}\right\}
$$

and $E / F$ is a degree- $p$ extension obtained by adjoining the $p$ th root of some $S$-unit, it follows that $\left[\operatorname{Ker}(\varphi):\left(\mathcal{O}_{F, S}^{\times}\right)^{p}\right]=p$. Now, using the version of our earlier formula for $\mathcal{O}_{F_{v}}^{\times}\left(\right.$rather than $\left.F_{v}^{\times}\right)$, the right-hand side has order

$$
\prod_{v \in T} \frac{\# \mu_{p}\left(F_{v}\right)}{|p|_{v}}=p^{\# T}=p^{\# S-1}
$$

so the map is indeed surjective.
Step 3. We'd now like to establish the claim: that if $x \in\left(F_{v}^{\times}\right)^{p}$ for all $v \in S$, then $x \in\left(\mathcal{O}_{F, S \cup T}^{\times}\right)^{p}$ (the converse is trivial). We'd like to show that $F(\sqrt[p]{x})=F$. Set

$$
\Gamma:=\prod_{v \in S} F_{v}^{\times} \times \prod_{v \in T}\left(\mathcal{O}_{F_{v}}^{\times}\right)^{p} \times \prod_{v \notin S \cup T} \mathcal{O}_{F_{v}}^{\times} \subseteq \mathbb{A}_{F, S}^{\times}
$$

where this is again a different $\Gamma$ from earlier. Then in fact,

$$
\Gamma \subseteq \mathrm{N}\left(\mathbb{A}_{F(\sqrt[p]{x})}^{\times}\right) \subseteq \mathbb{A}_{F}^{\times}
$$

where the third term is because $F(\sqrt[p]{x}) / F$ is unramified outside of $S \cup T$, the second because $[F(\sqrt[p]{x}): F] \leq p$, and the first because the extension is split at all places of $S$ by assumption. Now, we want to show that $F^{\times} \cdot \Gamma=\mathbb{A}_{F}^{\times}$, because the first inequality then implies the result as in Claim 23.6. By Step 2, we have

$$
\mathcal{O}_{F, S}^{\times} \rightarrow \prod_{v \in T} \mathcal{O}_{F_{v}}^{\times} /\left(\mathcal{O}_{F_{v}}^{\times}\right)^{p}=\mathbb{A}_{F, S}^{\times} / \Gamma
$$

hence $\mathcal{O}_{F, S}^{\times} \cdot \Gamma=\mathbb{A}_{F, S}^{\times}$. This implies that

$$
F^{\times} \cdot \Gamma=F^{\times} \cdot \mathbb{A}_{F, S}^{\times}=\mathbb{A}_{F}^{\times}
$$

by assumption on $S$.

Now we'd like to infer the general case of the second inequality from the specific case proven above. The first step is as follows:

Claim 23.10. If the second inequality holds for any cyclic order-p extension for which the base field contains a pth root of unity, then it holds for any cyclic order-p extension.

Proof. Let $E / F$ be a degree- $p$ cyclic extension of global fields. Recall that the second inequality for $E / F$ is equivalent to the existence of a canonical injection

$$
\operatorname{Br}(F / E) \hookrightarrow \bigoplus_{v \in M_{F}} \operatorname{Br}\left(F_{v}\right) .
$$

Indeed, we have an short exact sequence

$$
0 \rightarrow E^{\times} \rightarrow \mathbb{A}_{E}^{\times} \rightarrow C_{E} \rightarrow 0
$$

and the long exact sequence on cohomology then gives

$$
\underbrace{H^{1}\left(G, \mathbb{A}_{E}^{\times}\right)}_{\oplus H^{1}\left(E_{w}^{\times}\right)=0} \rightarrow H^{1}\left(G, C_{E}\right) \rightarrow \operatorname{Br}(F / E) \rightarrow \bigoplus_{v} \operatorname{Br}\left(F_{v} / E_{w}\right) \subseteq \bigoplus_{v} \operatorname{Br}\left(F_{v}\right)
$$

for some choice of $w \mid v$, where the first equality is by Hilbert's Theorem 90. In order to show the vanishing of $H^{1}\left(G, C_{E}\right)$, it suffices to show that the final map is injective. Now, the field extensions

induce a commutative diagram

where the left-most maps are the restriction and inflation maps on cohomology, respectively, using the cohomological interpretation of the Brauer group (see Problem 2 of Problem Set 7). Moreover, the composition is injective on $\operatorname{Br}(F / E)$, as it is $p$-torsion (by Problem 2(c)), and $\left[F\left(\zeta_{p}\right): F\right] \mid(p-1)$. Thus, $\gamma$ is injective as well. Since the second equality holds for $E\left(\zeta_{p}\right) / F\left(\zeta_{p}\right)$ by assumption, $\beta$ is injective, hence $\alpha$ is injective as well.

Claim 23.11. If the second inequality holds for any cyclic order-p extension of number fields, then it holds for any extension.

Proof. We'd like to show that $H^{1}\left(G, C_{E}\right)=0$. As for any Tate cohomology group of a finite group, we have an injection

$$
H^{1}\left(G, C_{E}\right) \hookrightarrow \bigoplus_{p} H^{1}\left(G_{p}, C_{E}\right)
$$

where $G_{p}$ is the $p$-Sylow subgroup of $G$. Thus, we may assume that $G$ is a $p$ group. Since every $p$-group $G$ contains a normal subgroup $H$ isomorphic to $\mathbb{Z} / p \mathbb{Z}$, we may assume that we have field extensions $E_{2} / E_{1} / F$, where $\operatorname{Gal}\left(E_{2} / E_{1}\right) \simeq H$ and $\operatorname{Gal}\left(E_{1} / F\right) \simeq G / H$. We may assume that the theorem holds for $H$ acting on $E_{2}$ and $G / H$ acting on $E_{1}$, so we may simply repeat the sort of argument showing injectivity on Brauer groups in the proof of the previous claim.

First, we claim that $C_{E_{2}}^{H}=C_{E_{1}}$. Indeed, we have a short exact sequence

$$
0 \rightarrow E_{2}^{\times} \rightarrow \mathbb{A}_{E_{2}}^{\times} \rightarrow C_{E_{2}} \rightarrow 0
$$

and the long exact sequence on cohomology then gives

$$
0 \rightarrow \underbrace{H^{0}\left(H, E_{2}^{\times}\right)}_{E_{1}^{\times}} \rightarrow \underbrace{H^{0}\left(H, \mathbb{A}_{E_{2}}^{\times}\right)}_{\mathbb{A}_{E_{1}}^{\times}} \rightarrow \underbrace{H^{0}\left(H, C_{E_{2}}\right)}_{C_{E_{2}}^{H}} \rightarrow \underbrace{H^{1}\left(H, E_{2}^{\times}\right)}_{0}
$$

by Hilbert's theorem 90. Note that $\mathbb{A}_{E_{2}}^{\times, H}=\mathbb{A}_{E_{1}}^{\times}$as taking invariants by a finite group commutes with direct limits and products in the definition of the adéles.

Then we have

$$
\operatorname{hKer}\left(C_{E_{2}}^{\mathrm{h} G}=\left(C_{E_{2}}^{\mathrm{h} H}\right)^{\mathrm{h} G / H} \rightarrow\left(\tau^{\geq 2} C_{E_{2}}^{\mathrm{h} H}\right)^{\mathrm{h} G / H}\right) \simeq\left(\tau^{\leq 0} C_{E_{2}}^{\mathrm{h} H}\right)^{\mathrm{h} G / H}=\left(C_{E_{1}}\right)^{\mathrm{h} G / H}
$$

where the first equality is by Problem 3 of Problem Set 6 , the map follows by definition of truncation, the quasi-isomorphism is because $H^{1}\left(H, C_{E_{2}}\right)$ vanishes by assumption, and finally, the second expression is simply the naive $H$-invariants of $C_{E_{2}}$, as the truncation kills all cohomologies in degrees greater than 0 , so the
previous claim gives the equality. The long exact sequence on cohomology then gives

$$
\underbrace{H^{1}\left(\left(C_{E_{1}}\right)^{\mathrm{h} G / H}\right)}_{H^{1}\left(G / H, C_{E_{1}}\right)=0} \rightarrow \underbrace{H^{1}\left(\left(C_{E_{2}}\right)^{\mathrm{h} G}\right)}_{H^{1}\left(G, C_{E_{2}}\right)} \rightarrow \underbrace{H^{1}\left(\left(\tau^{\geq 2} C_{E_{2}}^{\mathrm{h} H}\right)^{\mathrm{h} G / H}\right)}_{0}
$$

as the rightmost complex is in degrees at least 2. Thus, $H^{1}\left(G, C_{E_{2}}\right)=0$, as desired.

MIT OpenCourseWare
https://ocw.mit.edu

### 18.786 Number Theory II: Class Field Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

