
LECTURE 23

Proof of the Second Inequality

Our goal for this lecture is to prove the “second inequality”: that for all exten-
sions E/F of global fields, we have H1(G,CE) = 0, where CE := A×E/E× is the
“idèle class group” of E. Our main case is when E/F is cyclic of order p, and ζp ∈ F
for some primitive pth root of unity ζp, and we will reduce to this case at the end
of the lecture (note that char(F ) = 0 as we are assuming that F is a number field).
In this case, it suffices to show that

#Ĥ0(CE) = #(CF /NCE) = #(A×F /F
× ·N(A×E)) ≤ p.

Indeed, by the “first inequality,” we know that

#Ĥ0(CE)

#Ĥ1(CE)
= p,

hence p · #Ĥ1(CE) = #Ĥ0(CE) ≤ p implies #H1(CE) = 1, as desired. Our
approach will be one of “trial and error”—that is, we’ll try something, which won’t
quite be good enough, and then we’ll correct it.

Fix, once and for all, a finite set S of places of F such that
(1) if v | ∞, then v ∈ S;
(2) if v | p, then v ∈ S;
(3) A×F = F× · A×F,S , where we recall that

A×F,S :=
∏
v∈S

F×v ×
∏
v/∈S

O×Fv

and that this is possible by Lemma 20.12;
(4) E = F ( p

√
u), for some u ∈ O×F,S := F× ∩ A×F,S are the “S-units” of F .

This is possible by Kummer Theory.
Note that this last condition implies that E is unramified outside of S, as u is
an integral element in any place v /∈ S, and since p is prime to the order of the
residue field of Fv as all places dividing p are in S by assumption, Fv( p

√
u)/Fv is

an unramified extension.
An important claim, to be proved later in a slightly more refined form, is the

following:

Claim 23.1. u ∈ O×F,S is a pth power if and only if its image in F×v is a pth
power for each v ∈ S.

Let
Γ :=

∏
v∈S

(F×v )p ×
∏
v/∈S

O×Fv ⊆ A×F,S .

Then we have the following claims:

Claim 23.2. O×F,S ∩ Γ = (O×F,S)p.
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102 23. PROOF OF THE SECOND INEQUALITY

Proof. This follows trivially from the previous claim. �

Claim 23.3. Γ ⊆ N(A×E).

Proof. The extension E/F is unramified at each v /∈ S, hence the factor∏
v/∈S O

×
Fv
⊆ N(A×E). Since p kills Ĥ0(E×w ), for a choice of w | v, it follows that the

factor
∏
v∈S(F×v )p ⊆ N(A×E) as well. �

Thus,
#(A×F /F

× ·N(A×E)) ≤ #(A×F /F
× · Γ),

and we have a short exact sequence

1→ O×F,S/(O
×
F,S ∩ Γ)→ A×F,S/Γ→ A×F /(F

× · Γ)→ 1.

Indeed, the third map is surjective by property (3) of S above, the second map is
injective as O×F,S ⊆ F×, and exactness at A×F,S/Γ holds by definition. Thus,

#(A×F /F
× · Γ) =

#(A×F,S/Γ)

#(O×F,S/O
×
F,S ∩ Γ)

,

and it remains to compute both the numerator and denominator of this expression.
We have

A×F,S/Γ =
∏
p∈S

F×v /(F
×
v )p,

and we recall from (6.3) that

#(F×v /(F
×
v )p) =

p ·#µp(Fv)
|p|v

=
p2

|p|v
as ζp ∈ F by assumption. Thus, ∏

v∈S

p2

|p|v
= p2·#S

by the product rule, as |p|v = 1 for v /∈ S by assumption. Now we’d like to compute

#(O×F,S/O
×
F,S ∩ Γ) = #(O×F,S/(O

×
F,S)p).

Recall that, by the S-unit theorem,

O×F,S ' Z#S−1 × (O×F,S)tors.

The latter is cyclic, and has order divisible by p, hence

#(O×F,S/(O
×
F,S)p) = p#S−1 · p = p#S .

Combining these two results, we obtain

#Ĥ0(CE) ≤ p2·#S

p#S
= p#S ,

which is unfortunately not good enough.
Here is how we will improve on this result:

Claim 23.4. Given such a set S ⊆MF , there exists a set T ⊆MF such that
(1) #T = #S − 1;
(2) S ∩ T = ∅;
(3) every v ∈ T is split in E, i.e., Ew = Fv for all w | v;
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(4) any u ∈ O×F,S∪T is a pth power if and only if u ∈ F×v is a pth power for
all v ∈ S.

Note the key difference here from earlier: in property (4), we do not require
that u ∈ (F×v )p for all v ∈ S ∪ T , merely for all v ∈ S. Given such a T , we redefine
Γ by

Γ :=
∏
v∈S

(F×v )p ×
∏
v∈T

F×v ×
∏

v/∈S∪T

OF×v .

Claim 23.5. Γ ⊆ N(A×E).

Proof. Property (3) implies the claim for the second factor; the first and third
follow as before. �

Redoing our calculations with A×F,S∪T instead of A×F,S , we obtain

#(A×F,S∪T /Γ) = p2·#S

as before by property (4), and

#(O×F,S∪T /(O
×
F,S∪T ∩ Γ)) = p#(S∪T ) = p2·#S−1,

again as before, hence their quotient is p, as desired! Thus, it suffices to prove the
claim above.

Claim 23.6. For any abelian extension F ′/F of global fields, the Frobenius
elements for v /∈ S generate Gal(F ′/F ).

We’d like to prove this purely algebraically, without the Chebotarev density
theorem (which, anyhow, gives a slightly different statement).

Proof. Let H be the subgroup generated by all Frobenii for v /∈ S, and let
F ′′ := (F ′)H be the fixed field. We’d like to show that F ′′ = F . Note that Frobv
is trivial in Gal(F ′/F )/H = Gal(F ′′/F ) for all v /∈ S, hence every v /∈ S splits in
F ′′/F (as they are unramified by assumption). Thus, F ′′w = Fv for all w | v and
v /∈ S, and we claim that this is impossible.

We may assume that F ′′/F is a degree-n cyclic extension (replacing it by a
smaller extension if necessary). By the first inequality, χ(CF ′′) = n, which gives

#(A×F /N(A×F ′′) · F
×) = #Ĥ0(CF ′′) ≥ n.

But because this extension is split for all v /∈ S, we have N((F ′′v )×) = F×v trivially,
and therefore

∏∐
v/∈S F

×
v ⊆ N(A×F ′′), where this is the restricted direct product.

Strong approximation then gives that F× ·
∏∐
v/∈S F

×
v is dense in A×F , and since it is

also open, this is a contradiction unless n = 1, as desired. �

We’d like to apply this claim for F ′ := F ({ p
√
u : u ∈ O×F,S}). First, a claim:

Claim 23.7. Gal(F ′/F ) = (Z/pZ)#S, for F ′ as above.

Proof. This is, in essence, Kummer theory, as O×F,S/(O
×
F,S)p ⊆ F×/(F×)p.

We know that all exponent-p extensions of F are given by adjoining pth roots of
elements of F×. The Galois group must be a product of copies of Z/pZ, but some
of these subgroups may coincide—iterated application of Kummer theory gives the
statement. �
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Now, we have F ′/E/F , as E/F was assumed to be obtained by adjoining the
pth root of some S-unit. Choose places w1, . . . , w#S−1 of E that do not divide
any places of S, whose Frobenii give a basis for Gal(F ′/E) ' (Z/pZ)#S−1, which
is possible by the argument of Claim 23.6. Then let T := {v1, . . . , v#S−1} be the
restrictions of the wi to F .

Claim 23.8. Each v ∈ T is split in E.

Proof. Since Frobv ∈ Gal(F ′/E), it acts trivially on E, so Gal(Ew/Fv) is
trivial for any w | v, as desired. �

This establishes condition (3) for T ; it remains to show condition (4), as con-
ditions (1) and (2) are implicit in the construction of T .

Claim 23.9. An element x ∈ O×F,S∪T is a pth power if and only if x ∈ (F×v )p

for every v ∈ S.

Proof. Step 1. We claim that

O×F,S ∩ (E×)p = {x ∈ O×F,S : x ∈ (F×v )p for all v ∈ T}.

The forward inclusion is trivial as (F×v )p = (E×w )p by the previous claim. For
the converse, note that for any x ∈ O×F,S , we have an extension F ′/E( p

√
x)/E. If

x ∈ (E×w )p for each w | v and v ∈ T , then this extension is split at w, so Frobw acts
trivially on E( p

√
x), hence Gal(F ′/E) acts trivially on E( p

√
x) as it is generated by

these Frobenii, hence E( p
√
x) = E and x ∈ (E×)p as desired.

Step 2. Now we claim that the canonical map

O×F,S
ϕ−→
∏
v∈T
O×Fv/(O

×
Fv

)p

is surjective. This is the step that really establishes the limit on the size of T from
which the second inequality falls out perfectly. We will proceed by computing the
orders of both sides. By Step 1, we have

Ker(ϕ) = {x ∈ O×F,S : x ∈ (E×)p}.

ThenO×F,S/Ker(ϕ) has order p#S−1. Indeed, we computed earlier thatO×F,S/(O
×
F,S)p

has order p#S , and since

(O×F,S)p = {x ∈ O×F,S : x ∈ (F×)p}

and E/F is a degree-p extension obtained by adjoining the pth root of some S-unit,
it follows that [Ker(ϕ) : (O×F,S)p] = p. Now, using the version of our earlier formula
for O×Fv (rather than F×v ), the right-hand side has order∏

v∈T

#µp(Fv)

|p|v
= p#T = p#S−1,

so the map is indeed surjective.
Step 3. We’d now like to establish the claim: that if x ∈ (F×v )p for all v ∈ S,

then x ∈ (O×F,S∪T )p (the converse is trivial). We’d like to show that F ( p
√
x) = F .

Set
Γ :=

∏
v∈S

F×v ×
∏
v∈T

(O×Fv )p ×
∏

v/∈S∪T

O×Fv ⊆ A×F,S ,
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where this is again a different Γ from earlier. Then in fact,

Γ ⊆ N(A×
F ( p
√
x)

) ⊆ A×F ,

where the third term is because F ( p
√
x)/F is unramified outside of S∪T , the second

because [F ( p
√
x) : F ] ≤ p, and the first because the extension is split at all places

of S by assumption. Now, we want to show that F× · Γ = A×F , because the first
inequality then implies the result as in Claim 23.6. By Step 2, we have

O×F,S �
∏
v∈T
O×Fv/(O

×
Fv

)p = A×F,S/Γ,

hence O×F,S · Γ = A×F,S . This implies that

F× · Γ = F× · A×F,S = A×F

by assumption on S. �

Now we’d like to infer the general case of the second inequality from the specific
case proven above. The first step is as follows:

Claim 23.10. If the second inequality holds for any cyclic order-p extension for
which the base field contains a pth root of unity, then it holds for any cyclic order-p
extension.

Proof. Let E/F be a degree-p cyclic extension of global fields. Recall that
the second inequality for E/F is equivalent to the existence of a canonical injection

Br(F/E) ↪→
⊕
v∈MF

Br(Fv).

Indeed, we have an short exact sequence

0→ E× → A×E → CE → 0,

and the long exact sequence on cohomology then gives

H1(G,A×E)︸ ︷︷ ︸⊕
H1(E×w )=0

→ H1(G,CE)→ Br(F/E)→
⊕
v

Br(Fv/Ew) ⊆
⊕
v

Br(Fv)

for some choice of w | v, where the first equality is by Hilbert’s Theorem 90. In
order to show the vanishing of H1(G,CE), it suffices to show that the final map is
injective. Now, the field extensions

E(ζp)

E F (ζp)

F
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induce a commutative diagram

Br(F/E)
⊕

v Br(Fv/Ew)

Br(F (ζp)/E(ζp))
⊕

v Br(F (ζp)w)

Br(F/E),

α

γ

×[F (ζp):F ]

δ

β

where the left-most maps are the restriction and inflation maps on cohomology,
respectively, using the cohomological interpretation of the Brauer group (see Prob-
lem 2 of Problem Set 7). Moreover, the composition is injective on Br(F/E), as
it is p-torsion (by Problem 2(c)), and [F (ζp) : F ] | (p − 1). Thus, γ is injective as
well. Since the second equality holds for E(ζp)/F (ζp) by assumption, β is injective,
hence α is injective as well. �

Claim 23.11. If the second inequality holds for any cyclic order-p extension of
number fields, then it holds for any extension.

Proof. We’d like to show that H1(G,CE) = 0. As for any Tate cohomology
group of a finite group, we have an injection

H1(G,CE) ↪→
⊕
p

H1(Gp, CE),

where Gp is the p-Sylow subgroup of G. Thus, we may assume that G is a p-
group. Since every p-group G contains a normal subgroup H isomorphic to Z/pZ,
we may assume that we have field extensions E2/E1/F , where Gal(E2/E1) ' H
and Gal(E1/F ) ' G/H. We may assume that the theorem holds for H acting on
E2 and G/H acting on E1, so we may simply repeat the sort of argument showing
injectivity on Brauer groups in the proof of the previous claim.

First, we claim that CHE2
= CE1

. Indeed, we have a short exact sequence

0→ E×2 → A×E2
→ CE2 → 0,

and the long exact sequence on cohomology then gives

0→ H0(H,E×2 )︸ ︷︷ ︸
E×1

→ H0(H,A×E2
)︸ ︷︷ ︸

A×E1

→ H0(H,CE2
)︸ ︷︷ ︸

CHE2

→ H1(H,E×2 )︸ ︷︷ ︸
0

by Hilbert’s theorem 90. Note that A×,HE2
= A×E1

as taking invariants by a finite
group commutes with direct limits and products in the definition of the adéles.

Then we have

hKer
(
ChG
E2

= (ChH
E2

)hG/H → (τ≥2ChH
E2

)hG/H
)
'
(
τ≤0ChH

E2

)hG/H
= (CE1

)hG/H ,

where the first equality is by Problem 3 of Problem Set 6, the map follows by
definition of truncation, the quasi-isomorphism is because H1(H,CE2) vanishes by
assumption, and finally, the second expression is simply the naive H-invariants
of CE2

, as the truncation kills all cohomologies in degrees greater than 0, so the
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previous claim gives the equality. The long exact sequence on cohomology then
gives

H1
(
(CE1)hG/H

)︸ ︷︷ ︸
H1(G/H,CE1

)=0

→ H1
(
(CE2)hG

)︸ ︷︷ ︸
H1(G,CE2

)

→ H1
(
(τ≥2ChH

E2
)hG/H

)︸ ︷︷ ︸
0

as the rightmost complex is in degrees at least 2. Thus, H1(G,CE2
) = 0, as

desired. �
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