
LECTURE 20

Proof of the First Inequality

We begin by fulfilling our promise from the last lecture. Let Ksep = K/L/K
be an extension of nonarchimedean local fields.

Claim 20.1. There is an exact sequence

0→ Brcoh(K/L)→ Brcoh(K)→ Brcoh(L).

Recall that Brcoh(K/L) essentially encodes division algebras over K that split
over L, and Brcoh(K) and Brcoh(L) encode division algebras over K and L, respec-
tively. The kernel of the map Brcoh(K)→ Brcoh(L) is essentially division algebras
over K that split over L, but we’ll make this precise from the cohomological side.
One can do this with spectral sequences (which are a bit annoying), but our focus
on chain complexes will allow for the proofs to come out much more conceptually.
We will need the following construction:

Definition 20.2. Let X be a chain complex of A-modules. Then τ≤nX is the
“truncated” chain complex

· · · → Xn−2 dn−2

−−−→ Xn−1 dn−1

−−−→ Ker(dn)→ 0→ 0→ · · ·

Lemma 20.3. The identity map τ≤nX → X is a map of complexes, and this
gives an isomorphism Hi(τ≤nX)

∼−→ Hi(X) for all i ≤ n.

Proof. It suffices to note that the two central squares below commute by the
definition of a chain complex:

· · · Xn−2 Xn−1 Ker(dn) 0 0 · · ·

· · · Xn−2 Xn−1 Xn Xn+1 Xn+1 · · · .
�

Corollary 20.4. If X qis−−→ Y , then the induced map τ≤nX → τ≤nY is also a
quasi-isomorphism.

Remark 20.5. Truncation, τ≤n, is the one operation that does not commute
with cones.

Definition 20.6. τ≥n+1X := hCoker(τ≤nX → X).

Lemma 20.7. HiX
∼−→ Hiτ≥n+1X for all i ≥ n+ 1.

Proof. A simple application of the long exact sequence on cohomology suf-
fices. �
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For the application to Brauer groups, we first introduce some notation:

GK := Gal(K/K)

GL := Gal(K/L)

H := Gal(L/K),

where we note that L/K must be Galois for Brcoh(K/L) to be defined. Recall that

Brcoh(K) := H2(GK ,K
×

)

Brcoh(L) := H2(GL,K
×

)

Brcoh(K/L) := H2(H,L
×

).

The main observation is that[
(K
×

)hGL
]hH

= (K
×

)hGK

by Problem 3 on Problem Set 6, since we have a short exact sequence

1→ GL → GK → H → 1.

Proof (of Claim 20.1). Note that L× = τ≤0(K
×

)hGL as complexes of H-
modules. Then by definition,

hCoker
(
L× → (K

×
)hGL

)
= τ≥1(K

×
)hGL ' τ≥2(K

×
)hGL ,

since this is equivalent to asserting that H1(GL,K
×

) = 0, which is just Hilbert’s
Theorem 90. Thus,

hCoker
(
(L×)hH → (K

×
)hGK

)
=
(
τ≥2(K

×
)hGL

)hH
.

Finally, the long exact sequence on cohomology gives

H1
(
τ≥2(K

×
)hGL

)hH︸ ︷︷ ︸
0

→ H2(H,L×)︸ ︷︷ ︸
Brcoh(K/L)

→ H2(GK ,K
×

)︸ ︷︷ ︸
Brcoh(K)

→ H2(GL,K
×

)H︸ ︷︷ ︸
Brcoh(L)H

↪→ Brcoh(L)

since for the first term, taking group cohomology can only increase the degrees of
a complex, therefore cannot introduce a non-trivial degree-1 cohomology, and for
the last, group cohomology is equivalent to taking invariants in the lowest non-zero
degree of a complex. �

Now we turn to global class field theory, which is in many ways less beautiful
than local class field theory; our treatment will be commensurately less thorough.

Theorem 20.8 (Main Theorems of gcft). Let F be a global field. Then

Galab(G) ' ̂(A×F /F×),

and moreover, for all finite Galois extensions E/F , we have

Gal(E/F )ab ' N(A×E)\A×F /F
×.

Note that here ·̂ denotes profinite completion as usual, and in the second equa-
tion we are taking the quotient of A×F by two separate objects.

The “motto” of gcft is that CF := A×F /F×, the idèle class group of F , plays
the role of K× in lcft, and they exhibit very similar behaviors (there’s a theory of
“class formations” to make this analogy tighter). Thus, we will be importing many
of the methods of lcft for our proofs of gcft; for instance, we would expect that
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some sort of “existence theorem” along with Kummer theory would allow us to
prove the former statement of Theorem 20.8 from the latter. We likely won’t have
time to show this implication in class, so instead we’ll focus on showing this second
assertion.

Our main “inputs” are the following:

Theorem 20.9 (Inequalities of gcft). (1) Let E/F be a degree-n cyclic
extension of global fields. Then χ(CE) = n (i.e., the Herbrand quotient of
CE).

(2) For all finite G-Galois extensions E/F of global fields, H1(G,CE) = 0.

The second statement is analogous to Hilbert’s Theorem 90, but is much harder
to show. These two statements are variously called the “first inequality” and “second
inequality” of gcft; our (arbitrarily) preferred convention is indicated. Indeed, the
first inequality gives

#Ĥ0(Z/nZ, CE) = n ·#H1(Z/nZ, CE) ≥ n,

and the second inequality gives #H0(Z/nZ, CE) ≤ n, hence it is precisely n.
In this lecture, we will prove the first inequality. Throughout, we let E/F be a

degree-n cyclic extension of global fields. To do this, we will compute χ(E×) and
χ(A×E), or at least their quotient, which will give us χ(CE) via the exact sequence

0→ E× → A×E → CE → 0.

A slight problem is that both Herbrand quotients are infinite.
First, a general comment on the structure of the group cohomology of A×E :

Claim 20.10. For a G-Galois extension E/F of global fields, we have

Ĥi(G,A×E) =
⊕
v∈MF

Ĥi
(
G, (E ⊗F Fv)×

)
for each i, where MF denotes the set of places (i.e., equivalence classes of valua-
tions) of F .

To be clear, this claim is entirely local, using the structure of the adèles as
amalgamating all local information about a global field; we do not make use of
the diagonal embedding of E×, which allows us to treat a field globally within the
adèles. Note that E ⊗F Fv is like the completion of E at v.

Proof. Recall that

A×E = lim−→
S⊂MF
#S<∞

(∏
v∈S

(E ⊗F Fv)× ×
∏
v/∈S

(OE ⊗OF OFv︸ ︷︷ ︸
OE⊗F Fv

)×

)
,

where S contains all ramified primes and infinite places (the set of which we hence-
forth denote by M∞F ). Note that usually we take S ⊂ME ; this alternate formula-
tion instead expresses such places of E in terms of which places of F they lie over.
By Problem 6(h) of Problem Set 6, Ĥi(G,−) commutes with direct limits bounded
uniformly from below, and also with direct products. This implies that

Ĥi(G,A×E) = lim−→
S⊂MF
#S<∞

(⊕
v∈S

Ĥi
(
G, (E ⊗F Fv)×

)
×
∏
v/∈S

Ĥi
(
G, (OE ⊗OF OFv )×

))
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= lim−→
S⊂MF
#S<∞

⊕
v∈S

Ĥi
(
G, (E ⊗F Fv)×

)
.

Indeed, because S was assumed to contain all ramified primes, the extension Ew/Fv
of local fields is unramified for any place w | v of E with v /∈ S, hence it has Galois
group the decomposition group Gw. Then we have

Ĥi
(
G, (OE ⊗OF OFv )×

)
= Ĥi(Gw,O×Ew) = 0

for any v /∈ S and w | v by Problem 1(d) on Problem Set 7, since

(OE ⊗OF Ok)× =
∏
w|v

O×Ew = Z[G]⊗Z[Gw] O×E,w

is an induced G-module, and the latter expression vanishes as noted in Exam-
ple 14.3. �

Now we attempt to circumvent the infinite-ness of the Herbrand quotients.

Definition 20.11. For any finite M∞F ⊆ S ⊂MF , let

AF,S :=
∏
v∈S

Fv ×
∏
v/∈S

OFv

denote the ring of S-adèles, and similarly for the group of S-idèles A×F,S .

Lemma 20.12. There exists a finite S ⊂MF with A×F,S · F× = A×F .

Proof. This identity is equivalent to asserting that the map

A×F,S → A×F,M∞F \A
×
F /F

× = Cl(F )

to the class group of F is surjective, where we may also take the quotient by AF,M∞F
since it is contained in AF,S by assumption, and the final canonical isomorphism is
by Problem 1(b) of Problem Set 2. Under this isomorphism, a uniformizer p ⊆ OK
of Fp maps to [p] ∈ Cl(F ). Since Cl(F ) is finite, we may simply take S to be M∞F
along with a set of places, each associated to a distinct element of Cl(F ). �

Now let us return to the case where E/F is cyclic, and choose a finite set
S ⊂MF containing the infinite and ramified places of S and satisfying A×E,S ·E× =

A×E , which is possible by the lemma (note that A×E,S := A×E,T , where T is the set
of places of E lying above the places of F in S; thus, we are really applying the
lemma to E, and projecting the set of places obtained down to F ).

Claim 20.13. We have a short exact sequence

0→ E×S → A×E,S → CE → 0,

where E×S := E× ∩ A×E,S.
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Proof. We have the following commutative diagram:

0 0 0

0 E×S A×E,S A×E,S/E
×
S 0

0 E×S A×E CE 0

E×/E×S A×E/A
×
E,S 0,

ψ

ϕ

where the map ϕ is surjective by our choice of S and is also injective by the definition
of E×S (i.e., ϕ(x) ∈ A×E,S implies x ∈ E×S ). The snake lemma then implies that the
map ψ is an isomorphism, as desired. �

By Claim 20.10, we have

Ĥi(E,A×E,S) =
⊕
v∈S

Ĥ×
(
G, (E ⊗F Fv)×

)
,

so

χ(A×E,S) =
∏
v∈S

χ
(
(E ⊗F Fv)×

)
=
∏
v∈S

χ
(∏
w|v

E×w

)
=
∏
v∈S

χ(E×w ) =
∏
v∈S

[Ew : Fv]

for some choice of w | v by Claim 7.8 and since(∏
w|v

E×w

)tG

' (E×w )tGw

as before. Now we’d like to compute χ(E×S ), and we want it to satisfy

n · χ(E×S ) =
∏
v∈S

[Ew : Fv],

again for some w | v. By Dirichlet’s unit theorem, E×S is finitely generated, and
therefore

E×S ' (E×S )tors × Zr,

where r is the rank of E×S . Thus, up to its torsion, E×S is an r-dimensional lattice.

Lemma 20.14. If a cyclic group G acts on an R-vector space V , and Λ1,Λ2 ⊆
V are two lattices fixed under the G-action, then χ(Λ1) = χ(Λ2) (where we are
regarding both lattices as G-modules).

We defer the proof to the next lecture for the sake of time. Now, recall the
map used in the proof of the unit theorem:

E×S →
∏
w∈T

R

x 7→ (log |x|w)w,



20. PROOF OF THE FIRST INEQUALITY 91

with T the primes of E lying above those in S, as before. The proof of the unit
theorem shows that this map has finite kernel, and its image is a lattice in the
hyperplane {(yw)w :

∑
w yw = 0}. Thus,

Im(E×S ) ∪ Z · (1, 1, . . . , 1)

is a lattice in
∏
w∈T R, and so

χ(E×S ) = χ(Im(E×S )) =
χ(Λ)

χ(Z)
=
χ(Λ)

n
,

where Λ is any G-fixed lattice. Now,

Λ :=
∏
w∈T

Z ⊆
∏
w∈T

R

is one such lattice. The Galois group G acts on
∏
w|v Z, hence

χ(Λ) = χ
(∏
v∈S

∏
w|v

Z
)

=
∏
v∈S

χ
(∏
w|v

Z
)

=
∏
v∈S

#Gw =
∏
v∈S

[Ew : Fv]

for a choice of w, as desired. This completes the proof of the first inequality.
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