
LECTURE 2

Hilbert Symbols

LetK be a local field over Qp (though any local field suffices) with char(K) 6= 2.
Note that this includes fields over Q2, since it is the characteristic of the field, and
not the residue field, with which we are concerned. Recall from the previous lecture
the duality

(2.1) Gal2(K) := Galab(K)/{g2 : g ∈ Galab(K)} ' Hom
(
K×/(K×)2,Z/2Z

)
,

where Gal2(K) and Galab(K) are profinite groups, the latter being the Galois group
of the maximal abelian extension of K, and K×/(K×)2 is a vector space of finite
or infinite dimension over the two-element field Z/2Z (in dualizing, the direct sum
of copies of Z/2Z comprising K×/(K×)2 is changed to a product, reflecting the
profinite nature of the left-hand side).

Also recall that lcft states that K× → Galab(K) is a profinite completion,
and therefore that Gal2(K) ' K×/(K×)2 in contrast to (2.1). Thus, lcft predicts
that there exists a canonical pairing of the following form:

Definition 2.1. Let the Hilbert symbol

(·, ·) : K×/(K×)2 ×K×/(K×)2 → {1,−1}

be defined by

(a, b) :=

{
1 if there exist x, y ∈ K such that ax2 + by2 = 1,

−1 otherwise,

for a, b ∈ K×.

Remark 2.2. This definition is only well-behaved for local fields. Also note
that (a, b) really is defined modulo multiplication by squares in a and b, as these
can be absorbed in x and y.

Proposition 2.3. The Hilbert symbol satisfies the following properties:
(1) Bimultiplicativity. For all a, b, c ∈ K×,

(a, bc) = (a, b) · (a, c).

(2) Non-degeneracy. For all a ∈ K×, if (a, b) = 1 for all b ∈ K×, then
a ∈ (K×)2.

Note that (a, b) = (b, a) trivially. Bimultiplicativity says that we can solve
ax2 +by2 = 1 if and only if either we can solve both ax2 +by2 = 1 and ax2 +cy2 = 1
separately, or we can’t solve either equation. This is a bit strange, and turns out
to only hold in general for local fields.
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Example 2.4. Let K := R. Then we can solve ax2 +by2 = 1 as long as a and b
are not both negative. As such, we have R×/(R×)2 = {1,−1}, since (R×)2 = R>0,
and so the pairing {1,−1} × {1,−1} → {1,−1} is indeed non-degenerate.

We now ask: when is x ∈ K× a square? When K = R,C, the answer is clear.
When, for instance, x ∈ Q×2 , then we may write x = 2v(x)y where y ∈ Z×2 , and x is
a square if and only if v2(x) is even and y is a square (which, as will be shown in
Problem 1(c) of Problem Set 1, is true if and only if y ≡ 1 mod 8).

Let p ⊆ OK be the unique maximal ideal, k := OK/p be the residue field with
char(k) = p, an odd prime, and π ∈ p a uniformizer, that is, π /∈ p2.

Claim 2.5. Let x ∈ K×, and write x = πv(x)y, where y ∈ O×K . Then the
following are equivalent:

(1) x is a square;
(2) v(x) is even and y is a square;
(3) y mod p is a square in K×.

Note that we may reduce to x ∈ O×K . We offer two proofs:

Proof (via Hensel’s Lemma). All explanations aside from that from the
final condition are clear. So suppose x mod p is a square in O×K . By Hensel’s
Lemma, the polynomial p(t) = t2 − x ∈ OK [t] has a root r ∈ OK if it has a root r̄
modulo p such that p̄′(r̄) 6= 0, i.e., the derivative is nonzero. But the first condition
holds by assumption, and in this case p′(t) = 2t which is surely nonzero as x = 0,
and therefore

√
x = 0, hence the second condition holds as well. �

Proof (Explicit). Consider the map x σ7→ x2, by which

O×K
σ−→ S ⊆ O×K , S := {x ∈ O×K : x is a square mod p}.

We’d like to show that σ is surjective, that is, every element of OK that is a square
mod p is a square in O×K . Now, observe that O×K is a filtered abelian group with
complete filtration (see Definition 2.7 below)

O×K ⊇ 1 + p ⊇ 1 + p2 ⊇ 1 + p2 ⊇ · · · ,
where the 1 + pn are all open subgroups of O×K . Clearly O×K/(1 + p) = k×, and
similarly (1 + p)/(1 + p2) ' k as for any 1 + aπ, 1 + bπ ∈ 1 + p, where a, b ∈ OK/p,
we have (1+aπ)(1+bπ) = 1+(a+b)π+abπ2, and since abπ2 ∈ p2, we are left with
1+(a+ b)π in the associated graded term, hence multiplication simply corresponds
to addition in k. Similarly, for each n ≥ 1, we have (1 + pn)/(1 + pn+1) ' k by a
similar argument, since n+ 1 ≤ 2n. Now, σ acts on the filtration as

O×K ⊇ 1 + p⊇ 1 + p2 ⊇ · · ·

O×K ⊇ S ⊇ 1 + p⊇ 1 + p2 ⊇ · · · ,

σ σ σ

where the inclusion 1 + p ⊆ S holds since 1 is trivially a square. Now, the map

O×K/(1 + p) = k×
σ−→ (k×)2 = S/(1 + p)

on Gr0 is trivially surjective (and has a small kernel). Moreover, for each n ≥ 1,
the map on Grn is

(1 + pn)/(1 + pn+1)
σ−→ (1 + pn)/(1 + pn+1),
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which, since for any x ∈ k we have

(1 + π2x)2 = 1 + 2xπn + x2π2n ≡ 1 + 2xπn mod pn+1

as 2n ≥ n + 1, is equivalent to the map k
x 7→2x−−−−→ k, which is an isomorphism

because #k = p is an odd prime. Thus, σ is surjective on each graded term, so by
Proposition 2.9, the map O×K

σ−→ S is surjective, as desired. �

Remark 2.6. In general, the tools we have to deal with O×K are the p-adic
exponential map, and this filtration, which, though an abstract formalism, has the
advantage of being simpler than O×K , as the quotients are all isomorphic to finite
fields. As a general principle, we can understand many things about A via its
associated graded Gr∗A.

Definition 2.7. Let A be an abelian group. A filtration on A is a descending
sequence of subgroups

A =: F0A ⊇ F1A ⊇ F2A ⊇ · · · ,
and it is said to be complete if A ∼−→ lim←−nA/FnA. The groups GrnA := FnA/Fn+1A

are the associated graded terms of the filtration.

Example 2.8. The groups

OK ' lim←−
n

OK/pn and O×K ' lim←−
n

O×K/(1 + pn)

are complete filtrations.

Proposition 2.9. Let f : A → B be a homomorphism of completely filtered
abelian groups, i.e., f(FnA) ⊂ FnB for each n ≥ 0. If the induced map

FnA/Fn+1A→ FnB/Fn+1B

is surjective (resp. injective), then f is surjective (resp. injective).

Proof. Assume that the associated graded maps are surjective and that both
filtrations are complete, as in the explicit proof of Claim 2.5. Suppose we have
some x ∈ B, and we’d like to solve the equation f(y) = x for y ∈ A. We can
solve the equation f(y0) ≡ x mod F1B, so that x − f(y0) ∈ F1B. Then, since
the associated graded map is surjective by assumption, we can solve the equation
f(ε1) ≡ x − f(y0) mod F2B, where ε1 ∈ F1A describes an “error term” lifted from
Gr1A. Observe that, since f is a homomorphism, we have

f(y1) = f(y0 + ε1) = f(y0) + f(ε1) ≡ x mod F2B,

where we have defined y1 := y0 +ε1. This is an equation of the same form as before,
and we may iterate to find a “compatible” system of yn such that f(yn) = x mod
Fn+1B for each n ≥ 0, where by “compatible” we mean that for each n we have
yn ≡ yn+1 mod Fn+1A. But then there is an induced element y ∈ lim←−A/FnA = A

corresponding to (y0, y1, . . .) under the inverse limit (note that the yn stabilize
modulo FnA for large enough n), which satisfies the initial equation f(y) = x since
both filtrations are complete by assumption. �

Remark 2.10. Though simple and abstract, many things (such as the previous
claim) can be proved easily with the preceding proposition. The advantage of
the approach via Hensel’s Lemma is that here we needed to use the fact that
the squaring map σ is a homomorphism, which is not true in general. Still, this
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approach was able to tell us which elements of O×K are squares in local fields of odd
residual characteristic.

The upshot is that when K is a local field of odd residual characteristic, we
have [K× : (K×)2] = 4 since [O×K : (O×K)2] = 2, and similarly for 2Z ⊆ Z, so
K×/(K×)2 is isomorphic to Z/2Z × Z/2Z as it has a basis {π, r} ⊂ O×K , where π
is a uniformizer and r is not a square modulo p (so certainly π and r don’t differ
by a square).

We now reformulate the Hilbert symbol in terms of norms over extension fields;
in contrast to the original definition, here we will view it asymmetrically. Suppose
a is not a square, so that K(

√
a) is a degree 2 extension of K (note that if a is

a nonzero square, then we need only understand K(
√
a) to be the corresponding

étale extension of K, isomorphic to K ×K).

Claim 2.11. We have (a, b) = 1 if and only if b is a norm for the extension
K(
√
a)/K, i.e., there is some element of K(

√
a) whose norm is b.

Proof. Assume b is a norm, that is, there exist α, β ∈ K such that

α2 − β2a = N(α+ β
√
a) = b,

hence α2 = aβ2 + b. Then if α 6= 0, we have

a

(
β

α

)2

+ b

(
1

α

)2

= 1,

so (a, b) = 1. If α = 0, then b+ β2a = 0. Letting

x :=
1

2

(
1 +

1

a

)
and y :=

1

2β

(
1− 1

a

)
,

we have

ax2 + by2 = a · 1

4
· (a+ 1)2

a2
+ (−β2a) · 1

4β2
· (a− 1)2

a2
=

(a+ 1)2 − (a− 1)2

4a
= 1,

so again (a, b) = 1.
The forward implication is a trivial reversal of the argument for nonzero α. �

We state, without proof, the main result about Hilbert Symbols. It’s important
that that the image of L× under the norm is not too big (not everything), and not
too small. We will see that this theorem is equivalent to the non-degeneracy of
Hilbert Symbols.

Theorem 2.12. If L/K is a quadratic extension of local fields, then the norm
N: L× → K× is a homomorphism, and N(L×) ⊆ K× is a subgroup of index 2.

Example 2.13. Consider C/R.
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