LECTURE 18

Norm Groups, Kummer Theory, and Profinite
Cohomology

Last time, we proved the vanishing theorem, which we saw implied that for
every finite Galois G-extension L/K, we have (L*)'¢ ~ Z'“[—2], which, taking ze-
roth cohomology, implies K% /NL* ~ G*", which we note cannot be trivial because
G must be a solvable group. However, in the first lecture, we formulated a different
theorem: .

Cal(K/K)™ := lim Gal(L/K)* ~ K*,

L/K
where the inverse limit is over finite Galois extensions L/K. Recall that
K*:= lim K*/T,
H
[K*:T]<o0

is the profinite completion of K, where I' is a finite-index closed subgroup of K (this
is the only reasonable way to define profinite-completion for topological groups).
Thus, we’d like to show that

lim K*/NL* ~  lim KX/,
L/K [K*:T'<oo

with L and I" as above.

DEFINITION 18.1. A subgroup I' of K* is a norm group (or norm subgroup) if
I’ = NL* for some finite extension L/K.

THEOREM 18.2 (Existence Theorem). A subgroup T' of K* is a norm group if
and only if T is closed and of finite index.

This clearly suffices to prove the statement of LCFT above.

REMARK 18.3. A corollary of LCFT is that is L/K is G-Galois, and L/Lo/K
is the maximal abelian subextension of K inside L, then NL* = NL;. This is
because

K*/NL* ~ G* ~ K* /NLf.

We'll prove the existence theorem in the case char(K) = 0, though it is true in

other cases (but the proof is more complicated).

LEMMA 18.4. IfT' C K* is a norm subgroup, then I is closed and of finite
index.

PROOF. Let L/K be an extension of degree n such that ' = NL*. Then
I'D Np/gK* = (K*)", which we’ve seen is a finite-index closed subgroup (because

it contains 1 + p7% for all sufficiently large n), hence I' is as well. Note that if
char(K) > 0, then (K*)™ actually has infinite index in K *! O
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The content of the existence theorem is thus that 7"#(1 + p’) is a norm sub-
group for all n; we’ve shown that norm subgroups are “not too small,” and now we
need to show that we can make them “small enough.”

LEMMA 18.5. If IV is a subgroup of K* such that K* D IV D T' for a norm
subgroup T, then T is a norm subgroup as well.

PROOF. Let L/K be a finite extension such that I' = NL*. As before, we may

assume that L/K is abelian. Then by LCFT,
I"/T'C K*/NL* ~ Gal(L/K)

is a normal subgroup as Gal(L/K) is abelian by assumption. Thus, there exists
some intermediate extension L/K'/K’ with I''/T' = Gal(L/K"), and

K*/N(K')* = Gal(K'/K) = Gal(L/K)/Gal(L/K') = (K*/NL*)/(I"/T)

— KX/F/

canonically. Thus, IV = N(K’)*, which is the desired result.

Note that we have implicitly used the fact that following diagram commutes
(for abelian extensions L/K) by our explicit setup of LCFT:

Gal(L/K) ~ K*/NL*

| [
Gal(K'/K) ~ K* /N(K')*.

Since the inverse image of I'V/T" = Ker(«) in K* is both IV and N(K”')*, we again
obtain IV = N(K’)*. O

Now, a digression: in the second lecture, we said that
K*/(K*)? ~ Gal**(K)/2 ~ Hom (K* /(K *)?,Z/2Z),

assuming char(K) = 0 (in particular, not 2) and where the first isomorphism is
via LCFT. That is, K*/(K*)? is self-dual. Now we ask, how do we generalize this
beyond n = 2?7 The answer is to use Kummer theory.

Recall that, assuming n f char(K) and that the group of nth roots of unity
tn € K has order n, we have

K> /(K*)" ~ Homes (Gal(K), ptn ),

where these are group homomorphisms. The upshot is that if K is also local, we’d
expect that

(18.1) K> /(K*)" ~ Hom(K™ /(K*)", pin).
Indeed, we have a map defined by
K™ /(K*)" = Homes (Gal(K), pn)
= Homs(Gal®™ (K), )

= Homyts ( &in KX/NLX,,un)
L/K
= lim Hom (K™ /NL*, uy,)
L/ K
— Homeys (K™, pin)
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= HOHl(KX/(KX)nyﬂn)v

where the second equality is because all such maps must factor through the abelian-
ization of Gal(K) (since p, is abelian), the third is by LCFT, and the fourth is by
duality. Note that the inverse limits are over finite extensions L/K, and that “con-
tinuous” (which is unnecessary when the domain is finite) here means that a map
kills some compact open subgroup, justifying the injection above. We’d like to show
that this map is also an isomorphism. Note that K* /(K *)™ is a finite abelian group
and n-torsion; thus, it suffices to show that both sides have the same order.

CLAIM 18.6. Let A be an n-torsion finite abelian group. Then
#A = #Hom(A,Z/nZ).

PROOF. A is a direct sum of groups Z/dZ for d | n, so we may reduce to the
case where A = Z/dZ for such a d (for the general case, direct sums and Hom
commute). Then

Hom(Z/dZ,Z/nZ) = (Z/n7Z)[d]
which has order d = #A, as desired. O

This shows that (18.1) is a canonical isomorphism (though the general state-
ment of the claim alone shows that it is an isomorphism). In the n = 2 case, one
can easily see that this is just the Hilbert symbol.

COROLLARY 18.7. If u, C K, then (K*)™ is a norm subgroup.

ProOF. If we dualize our Kummer theory “picture,” we obtain the following
commutative diagram:

Gal(K) —— Hom(K*/(K*)"™, i)

l B
cts

a . ab
K~ ?%&TIL/KKX/NLX —— QGal (K),

where « is continuous as an open subgroup inside the inverse limit is a norm sub-
group, hence its inverse image in K * is a finite-index and open subgroup. As we
just saw, Ker(8 o a) = (K*)", which is open (i.e., the full inverse image under
the canonical projection maps of a subset of K*/NL* for some L/K) in the in-
verse limit as the maps are continuous. Thus, by Lemma 18.5, (K*)™ is a norm
subgroup. O

Note that the map 3 above is surjective since it is realized as Gal®”(K) modulo
nth powers.

REMARK 18.8. “A priori” (i.e., if we forgot about the order of each group), the
kernel of this composition could be bigger than (K*)". By arguing that the two
were equal, we've produced a “small” norm subgroup.

PRrROOF (OF EXISTENCE THEOREM). Let K be a general local field of charac-
teristic 0. Let L := K((,)/K, where ¢, denotes the set of primitive nth roots
of unity. Since (L*)™ is a norm subgroup in L* by Corollary 18.7, N(L*)" =
N((L*)™) € K* is a norm subgroup in K*. But N(L*)* C (K*)" C K*, so
Lemma 18.5 shows that (K*)™ is a norm subgroup in K*.
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Now, observe that for all NV, there exists some n such that
(OF)" = (K*)"' N0 € 1+ Y.

Indeed, note that (Ox)?7~! C 1+ pk, where ¢ = #Ok /pk (since the reduction
mod pg raised to the (¢ — 1)st power must be 1). Thus, for sufficiently large v(n)
we have (0%)@ 1" C 1 4+ pi| since in general (1 4+ 2)" = 1 4 nz + --- (where the
ellipsis represents higher-order terms), and if v(n) > 0 then all terms aside from 1
will be in p¥.

As for finite-index subgroups “in the Z-direction,” that is, where we restrict to
multiples of 7%, it suffices to simply replace n by nN, so that only elements of
valuation divisible by N are realized. Thus, every finite-index open subgroup of
K* contains (K *)™ for some n, which is a norm subgroup as shown above, hence
is itself a norm subgroup by Lemma 18.5. ]

Let us now quickly revisit Kummer theory, which, as we will demonstrate, in
fact says something very general about group cohomology. Let G be a profinite
group, so that G = @l G; where the G; are finite groups.

DEFINITION 18.9. A G-module M is smooth if for all z € M, there exists a
finite-index open subgroup K C G such that K -z = z.

EXAMPLE 18.10. If G := Gal(K/K), then G acts on both K and K *, both of
which are smooth G-modules. This is because every element of either G-module
lies in some finite extension L/K, hence fixed by Gal(K /L) which is a finite-index
open subgroup by definition.

Smoothness allows to reduce to the case of a finite group, from what is often a
very complicated profinite group. We now must define a notion of group cohomology
for profinite groups, as our original formulation was only for finite groups.

DEFINITION 18.11. Let X be a complex of smooth G-modules bounded from

below. Then hGy K
XPE = lim (X )
nd

where K; := Ker(G — G;) and X% denotes the vectors stabilized (naively) by K.

It’s easy to see that this forms a directed system. Note that G; doesn’t act on
X, as it is only a quotient of G, but it does act on the vectors stabilized by K;.
The K; are compact open subgroups of G that are decreasing in size. Taking “naive
invariants” by K; is worrisome, as it does not preserve quasi-isomorphism, but in
fact we have the following;:

CLAIM 18.12. If X is acyclic, then X" is too.

The proof is omitted, though we note that it is important that X is bounded
from below. We have the following “infinite version” of Hilbert’s Theorem 90:

PROPOSITION 18.13. If L/K is a (possibly infinite) G-Galois extension, then
HYG,L*) = H'((L*)") = 0.
ProOF. We write L = Uz L;, where each L; is a finite GG;-Galois extension of
K. Then by definition,
HYG,L*) =lim H' (G;, K*) =0
% i
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by Hilbert’s Theorem 90. O

COROLLARY 18.14. Let G := Gal(K/K) and n be prime to char(K). If ju, C
K, then
K> /(K*)" ~ Homes (G, pin)-
PrROOF. We have a short exact sequence of smooth G-modules
0= pn — K LNy TSN}
The long exact sequence on cohomology then gives
HYG,K*) 225 HY(G, K ) = HY(G, pn) = H(G, K )
—_——— —_——— T
KX KX
by Hilbert’s Theorem 90 (Proposition 18.13). Thus, K*/(K*)" ~ HY(G, u,).
Since u, C K as in the setting of Kummer theory, it is fixed by G; as we saw via

cocycles, for the trivial group action we have H'(G, i) = Homes(G, 1), which
gives the desired result. ([l

Thus, we can actually derive Kummer theory very simply from abstract group
cohomology and Hilbert’s Theorem 90.
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