
LECTURE 18

Norm Groups, Kummer Theory, and Profinite
Cohomology

Last time, we proved the vanishing theorem, which we saw implied that for
every finite Galois G-extension L/K, we have (L×)tG ' ZtG[−2], which, taking ze-
roth cohomology, implies K×/NL× ' Gab, which we note cannot be trivial because
G must be a solvable group. However, in the first lecture, we formulated a different
theorem:

Gal(K/K)ab := lim←−
L/K

Gal(L/K)ab ' K̂×,

where the inverse limit is over finite Galois extensions L/K. Recall that

K̂× := lim←−
[K×:Γ]<∞

K×/Γ,

is the profinite completion ofK, where Γ is a finite-index closed subgroup ofK (this
is the only reasonable way to define profinite-completion for topological groups).
Thus, we’d like to show that

lim←−
L/K

K×/NL× ' lim←−
[K×:Γ]<∞

K×/Γ,

with L and Γ as above.

Definition 18.1. A subgroup Γ of K× is a norm group (or norm subgroup) if
Γ = NL× for some finite extension L/K.

Theorem 18.2 (Existence Theorem). A subgroup Γ of K× is a norm group if
and only if Γ is closed and of finite index.

This clearly suffices to prove the statement of lcft above.

Remark 18.3. A corollary of lcft is that is L/K is G-Galois, and L/L0/K
is the maximal abelian subextension of K inside L, then NL× = NL×0 . This is
because

K×/NL× ' Gab ' K×/NL×0 .

We’ll prove the existence theorem in the case char(K) = 0, though it is true in
other cases (but the proof is more complicated).

Lemma 18.4. If Γ ⊆ K× is a norm subgroup, then Γ is closed and of finite
index.

Proof. Let L/K be an extension of degree n such that Γ = NL×. Then
Γ ⊇ NL/KK× = (K×)n, which we’ve seen is a finite-index closed subgroup (because
it contains 1 + pnK for all sufficiently large n), hence Γ is as well. Note that if
char(K) > 0, then (K×)n actually has infinite index in K×! �
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The content of the existence theorem is thus that πnZ(1 + pnK) is a norm sub-
group for all n; we’ve shown that norm subgroups are “not too small,” and now we
need to show that we can make them “small enough.”

Lemma 18.5. If Γ′ is a subgroup of K× such that K× ⊇ Γ′ ⊇ Γ for a norm
subgroup Γ, then Γ′ is a norm subgroup as well.

Proof. Let L/K be a finite extension such that Γ = NL×. As before, we may
assume that L/K is abelian. Then by lcft,

Γ′/Γ ⊆ K×/NL× ' Gal(L/K)

is a normal subgroup as Gal(L/K) is abelian by assumption. Thus, there exists
some intermediate extension L/K ′/K ′ with Γ′/Γ = Gal(L/K ′), and

K×/N(K ′)× = Gal(K ′/K) = Gal(L/K)/Gal(L/K ′) = (K×/NL×)/(Γ′/Γ)

= K×/Γ′

canonically. Thus, Γ′ = N(K ′)×, which is the desired result.
Note that we have implicitly used the fact that following diagram commutes

(for abelian extensions L/K) by our explicit setup of lcft:

Gal(L/K) ' K×/NL×

Gal(K ′/K)'K×/N(K ′)×.

α

Since the inverse image of Γ′/Γ = Ker(α) in K× is both Γ′ and N(K ′)×, we again
obtain Γ′ = N(K ′)×. �

Now, a digression: in the second lecture, we said that

K×/(K×)2 ' Galab(K)/2 ' Hom
(
K×/(K×)2,Z/2Z

)
,

assuming char(K) = 0 (in particular, not 2) and where the first isomorphism is
via lcft. That is, K×/(K×)2 is self-dual. Now we ask, how do we generalize this
beyond n = 2? The answer is to use Kummer theory.

Recall that, assuming n 6 | char(K) and that the group of nth roots of unity
µn ⊆ K× has order n, we have

K×/(K×)n ' Homcts(Gal(K), µn),

where these are group homomorphisms. The upshot is that if K is also local, we’d
expect that

(18.1) K×/(K×)n ' Hom(K×/(K×)n, µn).

Indeed, we have a map defined by

K×/(K×)n = Homcts(Gal(K), µn)

= Homcts(Galab(K), µn)

= Homcts

(
lim←−
L/K

K×/NL×, µn
)

= lim−→
L/K

Hom(K×/NL×, µn)

↪→ Homcts(K
×, µn)
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= Hom(K×/(K×)n, µn),

where the second equality is because all such maps must factor through the abelian-
ization of Gal(K) (since µn is abelian), the third is by lcft, and the fourth is by
duality. Note that the inverse limits are over finite extensions L/K, and that “con-
tinuous” (which is unnecessary when the domain is finite) here means that a map
kills some compact open subgroup, justifying the injection above. We’d like to show
that this map is also an isomorphism. Note thatK×/(K×)n is a finite abelian group
and n-torsion; thus, it suffices to show that both sides have the same order.

Claim 18.6. Let A be an n-torsion finite abelian group. Then

#A = # Hom(A,Z/nZ).

Proof. A is a direct sum of groups Z/dZ for d | n, so we may reduce to the
case where A = Z/dZ for such a d (for the general case, direct sums and Hom
commute). Then

Hom(Z/dZ,Z/nZ) = (Z/nZ)[d]

which has order d = #A, as desired. �

This shows that (18.1) is a canonical isomorphism (though the general state-
ment of the claim alone shows that it is an isomorphism). In the n = 2 case, one
can easily see that this is just the Hilbert symbol.

Corollary 18.7. If µn ⊆ K, then (K×)n is a norm subgroup.

Proof. If we dualize our Kummer theory “picture,” we obtain the following
commutative diagram:

Gal(K) Hom(K×/(K×)n, µn)

K× lim←−L/K K
×/NL× Galab(K),

cts

α

cts

β

cts

where α is continuous as an open subgroup inside the inverse limit is a norm sub-
group, hence its inverse image in K× is a finite-index and open subgroup. As we
just saw, Ker(β ◦ α) = (K×)n, which is open (i.e., the full inverse image under
the canonical projection maps of a subset of K×/NL× for some L/K) in the in-
verse limit as the maps are continuous. Thus, by Lemma 18.5, (K×)n is a norm
subgroup. �

Note that the map β above is surjective since it is realized as Galab(K) modulo
nth powers.

Remark 18.8. “A priori” (i.e., if we forgot about the order of each group), the
kernel of this composition could be bigger than (K×)n. By arguing that the two
were equal, we’ve produced a “small” norm subgroup.

Proof (of Existence Theorem). Let K be a general local field of charac-
teristic 0. Let L := K(ζn)/K, where ζn denotes the set of primitive nth roots
of unity. Since (L×)n is a norm subgroup in L× by Corollary 18.7, N(L×)n =
N((L×)n) ⊆ K× is a norm subgroup in K×. But N(L×)n ⊆ (K×)n ⊆ K×, so
Lemma 18.5 shows that (K×)n is a norm subgroup in K×.
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Now, observe that for all N , there exists some n such that

(O×K)n = (K×)n ∩ O×K ⊆ 1 + pN
K .

Indeed, note that (O×K)q−1 ⊆ 1 + pK , where q = #OK/pK (since the reduction
mod pK raised to the (q − 1)st power must be 1). Thus, for sufficiently large v(n)
we have (O×K)(q−1)n ⊆ 1 + pNK , since in general (1 + x)n = 1 + nx+ · · · (where the
ellipsis represents higher-order terms), and if v(n)� 0 then all terms aside from 1
will be in pNK .

As for finite-index subgroups “in the Z-direction,” that is, where we restrict to
multiples of πN , it suffices to simply replace n by nN , so that only elements of
valuation divisible by N are realized. Thus, every finite-index open subgroup of
K× contains (K×)n for some n, which is a norm subgroup as shown above, hence
is itself a norm subgroup by Lemma 18.5. �

Let us now quickly revisit Kummer theory, which, as we will demonstrate, in
fact says something very general about group cohomology. Let G be a profinite
group, so that G = lim←−iGi where the Gi are finite groups.

Definition 18.9. A G-module M is smooth if for all x ∈ M , there exists a
finite-index open subgroup K ⊆ G such that K · x = x.

Example 18.10. If G := Gal(K/K), then G acts on both K and K
×
, both of

which are smooth G-modules. This is because every element of either G-module
lies in some finite extension L/K, hence fixed by Gal(K/L) which is a finite-index
open subgroup by definition.

Smoothness allows to reduce to the case of a finite group, from what is often a
very complicated profinite group. We now must define a notion of group cohomology
for profinite groups, as our original formulation was only for finite groups.

Definition 18.11. Let X be a complex of smooth G-modules bounded from
below. Then

XhG := lim−→
i

(
XKi

)hG/Ki
,

where Ki := Ker(G→ Gi) and XKi denotes the vectors stabilized (naively) by Ki.

It’s easy to see that this forms a directed system. Note that Gi doesn’t act on
X, as it is only a quotient of G, but it does act on the vectors stabilized by Ki.
The Ki are compact open subgroups of G that are decreasing in size. Taking “naive
invariants” by Ki is worrisome, as it does not preserve quasi-isomorphism, but in
fact we have the following:

Claim 18.12. If X is acyclic, then XhG is too.

The proof is omitted, though we note that it is important that X is bounded
from below. We have the following “infinite version” of Hilbert’s Theorem 90:

Proposition 18.13. If L/K is a (possibly infinite) G-Galois extension, then

H1(G,L×) := H1
(
(L×)hG

)
= 0.

Proof. We write L =
⋃
i Li, where each Li is a finite Gi-Galois extension of

K. Then by definition,

H1(G,L×) = lim−→
n

H1(Gi,K
×
i ) = 0
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by Hilbert’s Theorem 90. �

Corollary 18.14. Let G := Gal(K/K) and n be prime to char(K). If µn ⊆
K, then

K×/(K×)n ' Homcts(G,µn).

Proof. We have a short exact sequence of smooth G-modules

0→ µn → K
× x 7→xn−−−−→ K

× → 0.

The long exact sequence on cohomology then gives

H0(G,K
×

)︸ ︷︷ ︸
K×

x 7→xn−−−−→ H0(G,K
×

)︸ ︷︷ ︸
K×

→ H1(G,µn)→ H1(G,K
×

)︸ ︷︷ ︸
0

by Hilbert’s Theorem 90 (Proposition 18.13). Thus, K×/(K×)n ' H1(G,µn).
Since µn ⊆ K as in the setting of Kummer theory, it is fixed by G; as we saw via
cocycles, for the trivial group action we have H1(G,µn) = Homcts(G,µn), which
gives the desired result. �

Thus, we can actually derive Kummer theory very simply from abstract group
cohomology and Hilbert’s Theorem 90.
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