LECTURE 16

Vanishing of Tate Cohomology Groups

Recall that we reduced (cohomological) local class field theory to the following
statement: for a finite Galois extension L/K of nonarchimedean local fields with
Galois group G, we have

(L ok K™)<)*“ ~0,
i.e., this complex is acyclic. To show this vanishing, we will prove a general theorem
(due to Tate) about the vanishing of Tate cohomology, which makes the above
more tractable. Thus, we ask: given a complex X of G-modules, what conditions
guarantee that X*¢ is acyclic? The prototypical such result is the following:

THEOREM 16.1. For a cyclic group G, X'C is acyclic if and only if
HY(G,X)=0=HY (G, X).

PROOF. X*'C¢ can be computed be a 2-periodic complex. Note that any two
values of distinct parity (such as consecutive values) would suffice. (]

Our main results in this lecture are the following;:

THEOREM 16.2. Theorem 16.1 holds also if G is a p-group (i.e., #G = p", for
some prime p and n > 0).

From here, we will deduce the next result:

THEOREM 16.3. SupposAe that for every prime p and every p-Sylow subgroup
G, CG, H'(Gp,X)=0= HY(G,, X). Then X*“ is acyclic.

REMARK 16.4. In general, it’s not true that vanishing in two consecutive de-
grees is sufficient for any finite group G. Also, in practice, one often verifies the
vanishing of Tate cohomology in two consecutive subgroups for every subgroup of
G, and not just p-Sylow ones.

In the following lectures, we will deduce local class field theory from here.
We begin by proving Theorem 16.2. Throughout the following, let G be a

p-group.

PROPOSITION 16.5. Let X be a complex of Fp[G]-modules. If I;TO(G,X) =0,
then X' is acyclic.

Note that we only need vanishing in one degree here! For this, we first recall
the following fact.

LEMMA 16.6. Let V be a non-zero F,[G]-module. Then V& # 0.

PrOOF. Without loss of generality, we may assume that V' is finite-dimensional
over ), since V is clearly the union of its finite-dimensional G-submodules. Then
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#V = p" for some 0 < r < co. Every G-orbit of V either has size 1 or divisible by
p (since they must divide #G as the orbit is isomorphic to the quotient of G by the
stabilizer). Since {0} is a G-orbit of size 1, there must be another (since the sizes
of all the G-orbits must sum to p"), that is, some v € V& \ {0}. O

PROOF (OF PROPOSITION 16.5). Step 1. First, we claim that H°(G, X ®
V) = 0 for every finite-dimensional G-representation V over F,. Here G acts via
the “diagonal action,” i.e., on (X ® V)! = X' @V via g (x ® v) := gz ® gv. We
proceed by induction on dimp, V. By the previous lemma, we have a short exact
sequence of F,,[G]-modules

0=2VESV W =0
with dim W < dim V. This gives
hCoker(VE@ X V@ X)~W ® X.
Since ﬁO(G, W ® X) = 0 by the inductive hypothesis, and
H(G Ve X)=H (G, @ X)= @ H(G,X)=0
dim V& dim V&

by assumption on X, the long exact sequence on Tate cohomology gives HO (G, V®
X), as desired.

Step 2. We now show vanishing in negative degrees. Consider the short exact
sequence

00—V, = F,[G] S F, -0,
where V7 is defined as the kernel of €, analogously to what we called Ig with F,
replaced by Z. Let X be X with the trivial G-action. Then
X®F,[G] - X ®F,[G]
TRg—greg
is a G-equivariant map, and a bijection, hence an isomorphism. Indeed,
hz®g)=2®hg+— hgr @ hg = h(gz ® g).

In Problem 1(e) of Problem Set 7, it was proven that (X ® F,[G])'¢ is acyclic,
hence (X ® F,[G])'¢ is as well. Thus, the long exact sequence on Tate cohomology
gives

H™YG, X))~ H(G, X @ V).

We've seen in Step 1 that the right-hand side vanishes for i = 0, therefore H ! (G,X) =
0. Iterating, we get ﬁi(G, X)=0foralli<O0.

Step 3. To show vanishing in positive degrees, note that we have an exact
sequence

1'—>decg
0 — [i -
4

F,[G] = Va2 — 0,
where V5 is defined to be the cokernel as before. The same logic gives
H'(G, X @ V) ~ HYY(G, X),

and so Step 1 again shows that fIi(G, X)=0foralli>0. O
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PROOF (OF THEOREM 16.2). Define X/p := hCoker(X -2 X); note that
this is not the same as modding out all terms by p. Note that, as a complex of
Z|G)-modules, X/p is quasi-isomorphic to a complex of F,,[G]-modules. Since X is
only defined up to quasi-isomorphism, we may assume it is projective (in particular,
flat) as a complex of Z[G]-modules. Thus, we have a quasi-isomorphism

X/p = X ®zg) hCoker(Z[G] =% Z[G]) ~ X @yq) F,[Gl,

where the right-hand side computes X modded out by p term-wise. We then have
a long exact sequence

— H'(G,X) =% H(G,X) - H(G, X/p) —» HH (G, X) =5 H*(G, X) —

and so setting ¢ = 0, we obtain H° (G, X/p) = 0 by assumption. Thus, (X/p)t¢ is
acyclic by Proposition 16.5. It follows that fli(G, X/p) = 0 for all i, and therefore,
multiplication by p is an isomorphism on H (G, X) for each i. But as shown in
Problem 2(c) of Problem Set 7, multiplication by #G is zero on Hi (G, X). Since
G is a p-group, this is only possible if ﬁi(G, X) =0 for all i. |

PROOF (OF THEOREM 16.3). Since as mentioned above, multiplication by #G
is the zero map on H(G,X), it follows that H*(G, X) is #G-torsion. Thus, it
suffices to show that H(G,X)[p] = 0 for all p (ie., the p-torsion of H (G, X)
vanishes).

Recall that for every subgroup H of G, there are restriction and inflation maps
X6 5 Xt gnd Xt — X*C respectively, whose composition as an endomorphism
of X*¢ is homotopic to multiplication by the index [G : H].

Applying this to a p-Sylow subgroup H = G, of G and taking cohomology, we
obtain maps

HY(G,X)[p] ¢ H(G,X) — H(Gp, X) — H(G, X)
whose composition is multiplication by [G : G,], which is prime to p by defini-
tion. Thus, it is an isomorphism when restricted to H {(G, X)[p], and in particular,
HY(G, X)[p] = H'(Gp, X) is injective. But by Theorem 16.2, H* (G, X) = 0 for
all 4, which yields the desired result. O



MIT OpenCourseWare
https://ocw.mit.edu

18.786 Number Theory II: Class Field Theory
Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.






