
LECTURE 15

The Vanishing Theorem Implies Cohomological
lcft

Last time, we reformulated our problem as showing that, for an extension L/K
of nonarchimedean local fields with Galois group G,

(15.1) (L×)tG ' ZtG[−2].

Thus, our new goal is to compute the Tate cohomology of L×. Recall that we have
let Kunr denote the completion of the maximal unramified extension of K; we’d
like to use Kunr to compute this Tate cohomology.

Claim 15.1. If x ∈ Kunr is algebraic over K (which may not be the case due
to completion), then K ′ := K(x) is unramified over K.

Proof. As a finite algebraic extension of K, K ′ is a local field, and we have
an embedding

OK′/pKOK′ ↪→ OKunr/pKOKunr = k̄,

where k := OK/pK . So OK′/pKOK′ is a field, hence uniformizers of K and K ′ are
identical. �

Claim 15.2. (Kunr)σ=1 = K, that is, the elements fixed by (i.e., on which it
acts as the identity) the Frobenius automorphism σ ∈ G (obtained from the Frobenii
of each unramified extension, passed to the completion via continuity).

Recall that we have a short exact sequence

0→ K → Kunr 1−σ−−−→ Kunr,

which we may rewrite on multiplicative groups as

1→ K× → Kunr,× x 7→x/σx−−−−−→ Kunr,× v−→ Z→ 0.

We showed that an element of Kunr,× can only be written as x/σx if it is a unit in
the ring of integers O×Kunr ; this map is an isomorphism on each of the associated
graded terms, hence on O×Kunr .

Now, we’d like to explicitly construct the isomorphism in (15.1). Our first
attempt is as follows: let us assume that L/K is totally ramified (since we discussed
the unramified case last time, this is a rather mild assumption), so that Lunr =
L⊗K Kunr. Then we have the following theorem, to be proved later.

Theorem 15.3 (Vanishing Theorem). If L/K is totally ramified, then the com-
plex (Lunr,×)tG is acyclic.

Claim 15.4. The vanishing theorem implies cohomological lcft.
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Proof. Assume L/K is totally ramified. We have the four-term exact sequence

(15.2) 1→ L× → Lunr,× x 7→x/σx−−−−−→ Lunr,× v−→ Z→ 0.

We may rewrite this as follows:

A · · · 0 L× 0 0 · · ·

B · · · 0 Lunr,× Lunr,× 0 · · ·

Coker(A→ B) · · · 0 0 Z 0 · · · ,

1−σ

v

where L× is in degree −1. The final quasi-isomorphism to the homotopy cokernel
obtained from (15.2) follows from Claim 10.12, because A ↪→ B is an injection
(note that this holds in general for any four-term exact sequence). The term-wise
cokernel yields an injection

Lunr,×/L×
x 7→x/σx
↪−−−−−→ Lunr,×

since, omitting the quotient, L× is precisely the kernel of this map.
Now, we have a quasi-isomorphism

BtG = hCoker
(
Lunr,× 1−σ−−−→ Lunr,×)tG ' hCoker

(
(Lunr,×)tG → (Lunr,×)tG

)
,

so since (Lunr,×)tG is acyclic by the vanishing theorem, this homotopy cokernel is
as well by the long exact sequence on cohomology. Thus,

(L×[2])tG = hCoker
(
(L×[1])tG → 0

)
= hCoker

(
AtG → BtG

)
' ZtG,

as desired. �

Now suppose L/K is a general finite Galois extension with G := Gal(L/K)
(though we could handle the unramified and totally ramified cases separately, as any
extension is canonically a composition of such extensions). If L/K is unramified,
then

L⊗K Kunr =
∏

L↪→Kunr

Kunr

canonically, indexed by such embeddings. In fact, the following holds:

Theorem 15.5 (General Vanishing Theorem). [(L⊗K Kunr)×]tG is acyclic.

To understand the structure of L⊗K Kunr, note that we have an action of Ẑσ
on the second factor and of G on the first; these two actions (i.e., x⊗ y 7→ gx⊗ y
and x⊗ y 7→ x⊗ σy) clearly commute. Again, the points fixed under σ are

L = L⊗K K ↪→ L⊗K Kunr.

Claim 15.6. The following sequence is exact:

1→ L× → (L⊗K Kunr)×
x 7→x/σx−−−−−→ (L⊗K Kunr)× → Z→ 0.

Proof. If x ∈ Kunr is a unit, then σx is as well, so the map x 7→ x/σx is
well-defined, and moreover, x is in its kernel if and only if x is fixed under the
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action of σ, that is, x ∈ K, and since L ⊗K K = L we obtain a unit of L, which
shows exactness of the left half. Now, the map to Z is defined by

(L⊗K Kunr)× Z

K ⊗K Kunr,×︸ ︷︷ ︸
Kunr,×

,

NL/K⊗id v

where
NL/K(x) :=

∏
g∈G

gx.

Thus, its kernel is O×Kunr , which is precisely the image of x 7→ x/σx. Moreover, the
map is surjective as 1⊗ π 7→ 1. �

Observe that if L/K is totally ramified, then this is just our extension from
before. Indeed, if we write Lunr = L ⊗K Kunr, then the σ’s “match up,” that is,
the induced Frobenius automorphisms of Lunr and Kunr are identical as L and K
have the same residue field. The norm NL/K : Lunr,× → Kunr,× for this extension
satisfies vKunr ◦ N = vLunr (such an extension is generated by the nth root of a
uniformizer of K, and then N(π1/n) = π).

Now suppose L/K is unramified of degree n. Fix an embedding L ↪→ Kunr,
and let σ ∈ Gal(L/K) also denote the Frobenius element of L/K. Then we have
an isomorphism

L⊗K Kunr ∼−→
n−1∏
i=0

Kunr

x⊗ y 7→
(
(σix) · y

)n−1

i=0
,

where the product is taken via our fixed embedding (note that this could be done
more canonically by taking the product over embeddings as before). We now ask:
what does the automorphism id⊗σ of L⊗K Kunr correspond to under this isomor-
phism? We have

x⊗ σy 7→ (x · σy, σx · σy, σ2x · σy, . . .) = σ(σ−1x · y, x · y, σx · y, . . .),

so it is the action of σ on the rotation to the right of the image of x⊗y (note that σ
doesn’t have finite order on Kunr, so this should either, which rules our rotation as
a possibility for the image of id⊗σ). Similarly, the norm map NL/K :

∏
Kunr,× →

Kunr,× takes the product of all entries.
We’d like for some element (x0, . . . , xn−1) ∈

∏
Kunr,× to be in the image of

y/σy (i.e., the map in the middle of the exact sequence of Claim 15.6; here σ refers to
the automorphism id⊗σ) if and only if

∏
xi ∈ O×Kunr , that is,

∑
v(xi) = 0. Recall

that the reverse implication is trivial, as we have shown that O×Kunr

y/σy−−−→ O×Kunr is
surjective as it is at the associated graded level. For the forward direction, we have

(y0, . . . , yn−1)
y/σy7−→

(
y0

σyn−1
,
y1

σy0
, . . .

)
=: (x0, x1, . . .).

Thus,

y0 = x0 · σyn−1,
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y1 = x1 · σy0 = x1 · σx0 · · ·σ2yn−1,

· · · = · · ·
yn−1 = xn−1 · σxn−2 · · ·σn−1x0 · σnyn−1,

that is,
yn−1

σnyn−1
= xn−1 · σxn−2 · · ·σn−1x0.

Note that everything here is an element of Kunr, so we really do not have σn = id!
Last time, we showed that we can do this if and only if the right-hand side is in
O×Kunr , which is equivalent to saying that

∑
v(xi) = 0. The general case of this

exact sequence is sort of a mix of the two.
We now compare these results with those from the last lecture. Assume the Van-

ishing Theorem. For an unramified extension L/K, we have two quasi-isomorphisms
between (L×)tG and Z[−2]tG, one from what we just did, and the other since
(O×L )tG ' 0 implies (L×)tG ' ZtG ' (Z[−2])tG by cyclicity. We claim that these
two quasi-isomorphisms coincide. A sketch of the proof is as follows: we have
G = Z/nZ (with generator the Frobenius element), and a short exact sequence

0→ Z→ Z[G]
1−σ−−−→ Z[G]→ Z→ 0.

As shown in Problem 1(e) of Problem Set 7, Z[G]tG ' 0 is a quasi-isomorphism
(this is easy to show, and we’ve already shown it for cyclic groups). Thus, we
get ZtG[2] ' ZtG, and we claim that this is the same isomorphism that we get
from 2-periodicity of the complex. The proof is by a diagram chase. We have
(L⊗K Kunr)× =

∏
Kunr,×, which is a finite product. Thus, the diagram

1 L× (L⊗K Kunr)× (L⊗K Kunr)× Z 0

1 Z
∏n
i=0 Z︸ ︷︷ ︸
Z[G]

Z[G] Z 0

v

x 7→x/σx

∏
v

∑
v

∏
v

1−σ ε

commutes, where ε denotes the sum over the coordinates of Z[G]. This says precisely
that the isomorphisms obtained from both 4-term exact sequences coincide.

The upshot is that under lcft, we have an isomorphism K×/NL× ' Z/nZ by
which π 7→ Frob. Thus, we have reduced lcft to the Vanishing Theorem, which
we will prove in the next lecture.
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