
LECTURE 14

Tate Cohomology and Kunr

Let G be a finite group and X be a complex of G-modules. Let P qis−−→ Z be a
projective complex of G-modules. Then

• XhG := HomG(P,X) are the homotopy invariants;
• XhG := P ⊗Z[G] X are the homotopy coinvariants;

• XtG := hCoker(XhG
N−→ XhG) is the Tate complex .

The former two constructions preserve quasi-isomorphisms, sending acyclic com-
plexes to acyclic complexes, as projective complexes are flat. Moreover, recall the
notation

• Hi(G,X) := Hi(XhG) is group cohomology ;
• Hi(G,X) := H−i(XhG) is group homology ;
• Ĥi(G,X) := Hi(XtG) is Tate cohomology .

The final construction generalizes what we had earlier when G was cyclic if X is in
degree 0.

Let us now consider Tate cohomology for modules, and not complexes. Suppose
G acts on M . Then giving a map N f−→MG for an abelian group N is the same as
giving a map f : N → M such that g · f(x) = f(x) for all g ∈ G. Dually, giving a
map MG

f−→ N is the same as giving a map f : M → N such that f(g · x) = f(x)
(this is because the coinvariants are a quotient of M , whereas the invariants are a
submodule). Then since N(g · x) = N(x) and g · N(x) = N(x) for all g ∈ G, these
universal properties yield a diagram

M M

MG MG,

N:=
∑
g

N

where the norm map factors through the invariants and coinvariants. Note that the
norm map N is an isomorphism if #G is invertible inM . Mimicking the definition of
Tate cohomology, we get MG/N(MG) = MG/N(M) = Ĥ0(G,M), so homological
algebra is in fact better behaved than our “usual” algebra!

Now we ask: what is the norm map N for a complex of G-modules? We have
a canonical composition

XhG = P ⊗Z[G] X → Z⊗Z[G] X︸ ︷︷ ︸
term-wise

coinvariants

N−→ HomG(Z, X)︸ ︷︷ ︸
term-wise
invariants

→ HomG(P,X) = XhG

where the last map is via pullback, and the norm map is applied term-wise via
the norm on modules, which we know acts as desired by the previous construction
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(though it is only defined up to homotopy, etc.). Note that the “term-wise invari-
ants” take the degree-wise “naive” invariants, and don’t preserve quasi-isomorphisms;
the “term-wise coinvariants” are similar. Altogether, this gives a map which we will
call N: XhG → XhG.

Taking a complex in degree 0 (and in general, for a complex that is bounded
below), the homotopy invariants take that complex further to the right; similarly,
coinvariants take that complex leftward. But Tate cohomology does both those
things, so the result is unbounded, and tends to be very messy. It can be computed
in some simpler cases though, such as the following:

Proposition 14.1. Let M be a G-module, thought of as a complex in degree
0. Then

(1) Ĥi(G,M) = Hi(G,M) if i ≥ 1;
(2) Ĥ0(G,M) = MG/N(M);
(3) Ĥ−1(G,M) = Ker(N)/(g − 1) = Ker(N: MG →M);
(4) Ĥ−i(G,M) = Hi−1(G,M) if i ≥ 2.

Proof. The composition

MhG
N−→MhG →M tG = hCoker(N)

yields a long exact sequence on cohomology

· · · → H−i(MhG)→ Hi(MhG)→ Ĥi(G,M)→ H−i−1(MhG)→ · · · .
If i ≥ 1, then both H−i(MhG) and H−i−1(MhG) vanish, yielding an isomor-

phism Hi(G,M) ' Ĥi(G,M) by exactness.
Both H−1(MhG) and H−1(G,M) vanish, yielding an exact sequence

0→ Ĥ−1(G,M)→MG
N−→MG → Ĥ0(G,M)→ 0,

which shows (2) and (3).
If i ≥ 1, then H−i−1(G,M) and H−i(G,M) vanish, yielding an isomorphism

Ĥ−i−1(G,M) ' Hi(G,M) by exactness. �

Thus, cohomology shows up as Tate cohomology in higher degrees, though not
in the zeroth degree, and similarly homology shows up except (crucially) in degree
0. Of course, all of this depends on the fact that P is bounded.

Theorem 14.2 (Main Theorem of Cohomological lcft). Let L/K be an ex-
tension of nonarchimedean local fields with finite Galois group G. Then

(L×)tG ' (Z[−2])tG.

While it’s not immediately clear how to construct this isomorphism, it’s actually
not too complicated! In the next lecture, we’ll reduce it to a (very canonical!)
vanishing statement.

Now, what does this theorem actually mean? Taking zeroth cohomology, we
obtain

K×/N(L×) = Ĥ0(G,L×) = H0((L×)tG)

' H0((Z[−2])tG) = Ĥ−1(G,Z) = H1(G,Z) ' Gab,

as proven last lecture. We saw that this was true for degree-2 extensions of local
fields, so this provides a huge generalization of the Hilbert symbol for local fields!
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We now recall the construction of the isomorphism H1(G,Z) ' Gab. First, we
showed that Hi(G,Z[G]) = 0 for all i > 0. Indeed,

Z[G]⊗Z[G] P ' Z[G]⊗Z[G] Z = Z

is a quasi-isomorphism, since P is quasi-isomorphic to Z. In particular, all of the
lower homology groups vanish, since Z is in degree 0. Then we formed the following
short exact sequence:

0→ IG → Z[G]
ε−→ Z→ 0

where ε is defined by g 7→ 1, and where we have let IG := Ker(ε), which is an ideal
inside Z[G] where the sum of all coefficients is zero. Taking the long exact sequence
on group homology, we obtain

H1(G,Z[G])︸ ︷︷ ︸
0

→ H1(G,Z)→ IG/I
2
G → Z ∼−→ Z→ 0,

since in generalMG = M/IGM , hence we have an isomorphism H1(G,Z) ' IG/I2
G.

Finally, we show that IG/I2
G ' Gab by construction maps in both directions. We

claim that the following is a homomorphism modulo I2
G:

G IG/I
2
G

Gab.

g 7→g−1

To show this, expand (g − 1)(h − 1) for g, h ∈ G, and so forth; since IG/I2
G is

abelian, this map factors through Gab. For the inverse, we have the composition

IG/I
2
G ↪→ Z[G]/I2

G

∑
ngg 7→

∏
gng−−−−−−−−−→ Gab,

where we have writtenGmultiplicatively; we can check that this is a homomorphism
and an inverse of the previous map.

Example 14.3. Suppose L/K is an unramified extension of local fields, so G :=
Gal(L/K) = Z/nZ is cyclic, where this isomorphism is canonical with the Frobenius
element corresponding to 1. Recall that Ĥ0(G,O×L ) = 0, i.e., N: O×L � O

×
K is

surjective. We proved this via filtering; the first subquotient gives the norm map
k×L

N−→ k×K and the rest give the trace map kL
T−→ kK both of which are surjective

(for instance, the latter is because the extension is separable). We also showed that
the Herbrand quotient was χ(O×L ) = 1, which implies that Ĥ1(G,O×L ) = 0 as well,
i.e., (O×L )tG ' 0 is a quasi-isomorphism. Form the short exact sequence

0→ O×L → L×
v−→ Z→ 0,

where v denotes the normalized valuation on L×. Taking Tate cohomology then
gives a quasi-isomorphism

ZtG[−2] ' (L×)tG ' hCoker
(
0→ (L×)tG

)
' hCoker

(
(O×L )tG → (L×)tG

)
' ZtG,

by Theorem 14.2, and since Tate cohomology commutes with cones and preserves
quasi-isomorphisms. Thus, (L×)tG is 2-periodic. Note that this is canonical, despite
requiring a choice of generator, as we may choose the Frobenius element (by which
x 7→ xq).

We now turn to a discussion of general extensions of local fields.
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Definition 14.4. Kunr is the (p-adic) completion of the maximal unramified
extension of K ⊆ K.

Example 14.5. (1) Let K := Fq((t)). The nth unramified extension of
K is Kn = Fqn((t)), so the maximal unramified extension of K is⋃

n≥1

Fqn((t)) ⊆ Fq((t)) = Kunr.

(2) If K := Qp, then Kunr = W (Fp)[1/p], where W (−) denotes the ring of
Witt vectors.

The basic structure of Kunr is thus a “local field” (not in the sense of local
compactness, since the residue field is not finite, but in the sense of being a fraction
field of a complete dvr) with residue field Fq.

Now, letting π be a uniformizer of K, which will continue to be a uniformizer
in each Kn (i.e., the degree-n unramified extension of K), OKunr is the π-adic
completion of

⋃
nOKn . Then we have a short exact sequence

0→ O×Kunr → Kunr,× v−→ Z→ 0,

where v is the normalized valuation on Kunr (so that v(π) = 1). We then define

Gal(Kunr/K) := Autcts(K
unr/K),

where the latter is the continuous K-automorphisms of Kunr. Letting k denote the
residue field of K and σ denote the Frobenius element of Gal(k̄/k), we have

Gal(Kunr/K) ' Gal(k̄/k) ' Ẑ,
σ 7→ 1.

Since
K = {x ∈ Kunr : x = σx},

we have a resolution
0→ K → Kunr 1−σ−−−→ Kunr,

and further, a sequence

(14.1) 0→ K× → Kunr,× x 7→x/σx−−−−−→ Kunr,× v−→ Z→ 0.

Note that π cannot be in the image of central map since v(x) = v(σx) for all x.
This gives us an expression for K× in terms of Kunr,×, which will be our main tool
in coming lectures.

Claim 14.6. The sequence (14.1) is exact.

Proof. This is true if and only if every x ∈ O×Kunr can be written as y/σy for
some y ∈ O×Kunr . This amounts to showing that the map

O×Kunr

x7→x/σx−−−−−→ O×Kunr

is surjective. By completeness of the filtration by the maximal ideal (since Kunr

is complete by definition), it suffices to prove that this is true at the associated
graded level. This gives the maps

F×q
x 7→x/xq−−−−−→ F×q and Fq

x 7→(1−q)x−−−−−−−→ Fq.

The first is surjective as we can solve xq−1 = 1/y for any y ∈ F×q , since Fq is
algebraically closed. The latter is invertible, as the map is just the identity. �
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