
LECTURE 11

The Mapping Complex and Projective Resolutions

Throughout, A will be an associative algebra (which might not be commuta-
tive), e.g. A = Z,Z[G], where G is a (usually finite) group. Recall that we wanted
rules by which X 7→ XhG, XhG, where X is a complex of G-modules and XhG and
XhG are complexes of abelian groups. Our guiding “axioms” for this construction
will be:

(1) If X is acyclic, i.e., Hi(X) = 0 for all i ∈ Z, then we’d like XhG and XhG

to be acyclic also.
(2) BothXhG andXhG should commute with cones, i.e., if f : X → Y is a map

of complexes of G-modules, then hCoker(f)hG ' hCoker(XhG → Y hG).
This condition is relatively simple to satisfy, as it merely amounts to
commuting with finite direct sums and shifts by the proof of Claim 10.1.

(3) The construction should have something to do with invariants and coin-
variants. Namely, if X = (· · · → 0 → M → 0 → · · · ) is in degree 0 only,
then H0(XhG) = MG and

H0(XhG) = MG = Z⊗Z[G] M = M
/∑
g∈G

(g − 1)M.

A naive and incorrect attempt would be to define

XhG := (· · · → (X−1)G
d−→ (X0)G

d−→ (X1)G → · · · ),
for a chain complex

X := (· · · → X−1 d−→ X0 d−→ X1 → · · · ).
This trivially satisfies (2) and (3), and note that it is well-defined as the differ-

entials commute with the group automorphisms. A weak version of (1) is satisfied:
if X ' 0, i.e., the zero complex, then XhG and XhG are also homotopy equivalent
to 0. However, this construction doesn’t preserve acyclic complexes. Explicitly, if
G := Z/2Z acts on Z via multiplication by 1 and −1, then we have

(· · · → 0→ Z ×2−−→ Z→ Z/2→ 0→ · · · )hG = (· · · → 0→ 0→ 0→ Z/2→ 0→ · · · )
which is not acyclic!

A more hands-off approach is to note that if this construction preserved acyclic
complexes, then since the cone of any map of acyclic complexes must be acyclic by
the construction in (10.1), and since it commutes with cones by assumption, it would
also preserve quasi-isomorphisms by Corollary 10.11. But we saw in Claim 10.12
that for an injection M

i
↪−→ N of G-modules, we have hCoker(i)

qis−−→ Coker(i) =
N/M (where henceforth “qis” denotes a quasi-isomorphism). Thus, if the naive
invariants preserved acyclic complexes, then it would also preserve cokernels, which
we know to be false.
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Observe that, for A an associative algebra, if A = Z[G], then M 7→ MG =
HomZ[G](Z,M), where G is given the trivial G-action. Thus, we have a general
class of problems for every associative algebra A and A-module M .

Definition 11.1. Let X and Y be complexes of A-modules. Then the mapping
complex HomA(X,Y ) is the complex of abelian groups defined by Homi

A(X,Y ) :=∏
j∈Z HomA(Xj , Y j+i), with differential dif := df − (−1)ifd (the signs alternate

to ensure that the differential squares to zero). We can visualize this as follows:︷ ︸︸ ︷
· · · : · · · → · · ·

︷ ︸︸ ︷
· · · : · · · → · · ·

︷ ︸︸ ︷
· · · : · · · → · · ·

→ h−1 : X−1 → Y −2 dh−1+h0d−−−−−−−→f−1 : X−1 → Y −1 df−1−f0d−−−−−−→ g−1 : X−1 → Y 0 →
→ h0 : X0 → Y −1 dh0+h1d−−−−−−→ f0 : X0 → Y 0 df0−f1d−−−−−→ g0 : X0 → Y 1 →
→ h1 : X1 → Y 0 dh1+h2d−−−−−−→ f1 : X1 → Y 1 df1−f2d−−−−−→ g1 : X1 → Y 2 →

· · · : · · · → · · ·︸ ︷︷ ︸

∈

· · · : · · · → · · ·︸ ︷︷ ︸
∈

· · · : · · · → · · ·︸ ︷︷ ︸

∈

→
∏
i∈Z

Hom(Xi, Y i−1)

=

h 7→dh+hd−−−−−−→
∏
i∈Z

Hom(Xi, Y i)
=

f 7→df−fd−−−−−−→
∏
i∈Z

Hom(Xi, Y i+1)

=

→

Hom−1(X,Y ) Hom0(X,Y ) Hom1(X,Y )

where d denotes the respective differentials for X and Y .

Claim 11.2. For any complexes X and Y of A-modules, HomA(X,Y ) is a
complex .

Note that a map of complexes f : X → Y is equivalent to an element f = (f i) ∈
Hom0

A(X,Y ) such that df = 0, where d denotes the differential on Hom(X,Y ). A
null-homotopy of f is likewise equivalent to an element h ∈ Hom−1

A (X,Y ) such that
dh = f , with d as before. Thus, H0Hom(X,Y ) is equivalent to the equivalence
classes of maps X → Y modulo homotopy. This construction therefore generalizes
many important notions in homological algebra.

Example 11.3. If X := (· · · → 0 → A → 0 → · · · ), with A in degree 0, then
HomA(X,Y ) = Y . Thus, X is what we will call projective.

Definition 11.4. A complex P of A-modules is projective (or homotopy pro-
jective, or K-projective, etc.; the notion was defined by Spaltenstein) if for every
acyclic complex Y of A-modules, HomA(P, Y ) is also acyclic.

The issue above is that Z is not projective as a complex of Z[G]-modules. We
will show that we can in some sense replace Z “uniquely” by a projective module.

Lemma 11.5. If P is a complex of A-modules with P i = 0 for all i � 0 (i.e.,
the nonzero elements of P are bounded above in index), and P i is projective as an
A-module for all i, then P is projective (as a complex).

We recall the following definition:

Definition 11.6. An A-module P i is projective as an A-module if any of the
following equivalent conditions hold:

(1) HomA(P i,−) preserves surjections;
(2) HomA(P i,−) is an exact functor;
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(3) P i is a direct summand of a free module;
(4) Given any surjection N � M , every map P i → M of A-modules lifts to

a map P i → N such that the following diagram commutes:

N

P i M

0.

We briefly justify these equivalences. Evidently (1) and (4) are equivalent, as
(4) states that if N � M then HomA(P i, N) � HomA(P i,M). Condition (2) is
trivially equivalent to (1). To show (3), take M := P i and N to be some free
module surjecting onto P i (for instance, take all elements of P i as a basis, and
then just send corresponding elements to each other). Then (4) gives a splitting
of N � P i, realizing P i as a direct summand of M . It’s easy to see that direct
summands of projective modules are projective, so to show the converse, we simply
note that free modules are projective.

Claim 11.7. An A-module P is projective as an A-module if and only if it is
projective as a complex in degree 0.

Proof. If P is projective as a complex in degree 0, then let f : N � M be a
surjection, and form the acyclic complex

X := (· · · → 0→ Ker(f)→ N →M → 0→ · · · ).

Then HomA(P,X) is

· · · → 0→ HomA(P,Ker(f))→ HomA(P,N)→ HomA(P,M)→ 0→ · · · ,

and so HomA(P i,−) preserves surjections and P is projective as an A-module by
definition.

Conversely, if X := (· · · → X−1 d−1

−−→ X0 d0−→ X1 → · · · ) is an acyclic complex
and P is projective as an A-module, then

HomA(P,X) = (· · · → HomA(P,X−1)→ HomA(P,X0)→ HomA(P,X1)→ · · · ),

which is acyclic as if Xi−1 � Ker(Xi → Xi+1), then

Hom(P,Xi−1)� Hom(P,Ker(Xi → Xi+1)) = Ker(Hom(P,Xi)→ Hom(P,Xi+1))

as Hom(P,−) is exact and so preserves kernels by assumption. Thus HomA(P,X)
is also acyclic and P is projective as a complex in degree 0, as desired. �

Proof (of Lemma). Let Y be an acyclic complex of A-modules. We need
the following claim:

Claim 11.8. Every map P → Y is null-homotopic.

Proof. Let f : P → Y . We construct a null-homotopy h of f by descending
induction. For the base case, note that for all i � 0 (where this has the meaning
in the statement of the lemma), we have P i = 0, so f i = 0, and therefore we may
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take hi := 0. Now suppose we have maps h : P j → Y j−1 for all j > i, so that the
following diagram commutes:

· · · P i−1 P i P i+1 · · ·

· · · Y i−1 Y i Y i+1 · · · .

d d

f

d

f
?

d

fh h

d d d d

We’d like to construct a map h : P i → Y i−1 such that dh+ hd = f . Observe that,
for all x ∈ P i, we have

(d(f − hd))(x) = ((df − (f − hd)d)(x) = (df − fd)(x) = 0

by the inductive hypothesis. Since (f − hd) : P i → Ker(d : Y i → Y i+1) by the
previous assertion and there is a surjection d : Y i−1 → Ker(d : Y i → Y i+1), the
map f−hd lifts to a map h : P i → Y i−1 such that dh = f−hd as P i is projective by
assumption. Thus, dh+hd = f and h defines a null-homotopy of f , as desired. �

By the claim, H0(HomA(P, Y )) = {P → Y } = 0 and Hi(HomA(P, Y )) =
H0(HomA(P, Y [i])) = 0 as Y [i] is also acyclic for each i. Thus,the cohomologies
vanish for each i and HomA(P, Y ) is therefore acyclic, so Y is projective as desired.

�

Our plan, approximately, will be to show that every X is quasi-isomorphic
to a projective complex P , that is, P qis−−→ X, called a projective resolution of X.
Moreover, P will be “unique” or “derived” in a sense to be defined later on. Then
we get some “corrected” version called Homder

A (X,Y ) := HomA(P, Y ). Letting
A := Z[G] and choosing some projective resolution P

qis−−→ Z (which will be very
canonical, and even simpler for finite groups, though not exactly unique, although
it will not matter for cohomology), we can define XhG := HomG(P,X). This will
satisfy all of our axioms, as it has something to do with invariants since P is akin
to Z and preserves acyclic complexes as P is projective!

The following proposition is sufficient to show the first point, as the complex
we are interested in is Z in degree 0, which is trivially bounded above.

Proposition 11.9. Let X be a complex of A-modules, and suppose X is bounded
above, that is, Xi = 0 for all i � 0 as before. Then there exists a projective reso-
lution P qis−−→ X.

Proof. Without loss of generality, we may assume that X is bounded above
at index 0. Let P 0 be a free module surjecting onto X0 via a map α0 (one exists as
before; simply take generators, so that the kernel consists of the relations among
the generators). Then take P−1 to be a free module surjecting onto P 0 ×X0 X−1

as before (i.e., the fibre product over X0):

P−1 P 0 0 · · ·

X−1 X0 0 · · · .

α0

This construction preserves cohomology, as H0X = X0/ Im(X−1) = P 0/P−1 =
H0P , since P−1 surjects onto Ker(α0) and has image in P 0/Ker(α0) ' X0 equal
to X−1 (as P 0 � X0). Since P−1 � X−1, we may iterate this process to construct
a projective resolution P of X, as desired. �
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The second claim was about uniqueness of the projective resolution, which is
given by the following lemma:

Lemma 11.10. Suppose that P1 and P2 are projective resolutions of a complex
X of A-modules. Then there exists a homotopy equivalence γ such that the following
diagram commutes up to homotopy, that is, βγ ' α:

P1 P2

X.

γ

α

qis

β

qis

Proof. Consider the following diagram:

P1 P2

X

hCoker(β).

γ

α

δ

β

Since β is a quasi-isomorphism by assumption, hCoker(β) is acyclic by Corol-
lary 10.11. By Claim 11.8, the composition δ is null-homotopic, hence by Claim 10.8,
there is a canonical map

P1
γ−→ hKer(X → hCoker(β)) ' P2

via homotopy equivalence, as desired. By symmetry, such a map exists in the
opposite direction, hence γ is a homotopy equivalence and the diagram trivially
commutes up to homotopy. �

We can now ask how unique γ is here. The answer is given by the following:

Claim 11.11. All such γ are homotopic.

Proof. We imitate the proof of Lemma 11.10 with individual morphisms re-
placed by Hom-complexes. We have maps

Hom(P1, P2)
β∗−→
qis

Hom(P1, X)→ Hom(P1,hCoker(β)) = hCoker(β∗),

where β∗ is given by composition with β, and the final identification is for formal
reasons. Since P2 is projective, the last complex is acyclic (by definition), so ψ is a
quasi-isomorphism by Corollary 10.11, hence an isomorphism on homotopy classes
of maps. In particular,

H0Hom(P1, P2) = H0Hom(P2, X),

so since we have a given map inH0Hom(P2, X), the induced map inH0Hom(P1, P2)
is well-defined up to homotopy (as noted in the discussion following Definition 11.1).

�

In fact, we can show that all such homotopies between homotopies are ho-
motopic, and so on, so this is the best outcome we could possibly hope for in
establishing uniqueness.
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Definition 11.12. The ith Ext-group of two chain complexes of A-modules
M and N is defined as ExtiA(M,N) := HiHom(P,N), where P is some projective
resolution of M .

As we just showed, this definition is independent of which P we choose.
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