LECTURE 10

Homotopy, Quasi-Isomorphism, and Coinvariants

Please note that proofs of many of the claims in this lecture are left to Problem Set 5.

Recall that a sequence of abelian groups with differential d is a complex if $d^2 = 0$, $f: X \to Y$ is a morphism of chain complexes if df = fd, and h is a null-homotopy (of f) if dh + hd = f, which we illustrate in the following diagram:

$$\cdots \longrightarrow X^{-1} \xrightarrow{d} X^0 \xrightarrow{d} X^1 \longrightarrow \cdots$$

$$\downarrow^f \swarrow^h \downarrow^f \swarrow^h \downarrow^f \checkmark^f \checkmark^f \cdots$$

$$\cdots \longrightarrow Y^{-1} \xrightarrow{d} Y^0 \xrightarrow{d} Y^1 \longrightarrow \cdots$$

The invariants of a chain complex are the homology groups

$$H^{i}(X) := \operatorname{Ker}(d \colon X^{i} \to X^{i+1}) / \operatorname{Im}(d \colon X^{i-1} \to X^{i}),$$

and for $f, g: X \Rightarrow Y$, we say that $f \simeq g$, that is, f and g are homotopic, if and only if there exists a null-homotopy of f - g, which by Lemma 9.10, forces f and g to give the same map on cohomology.

For a finite group G and extension L/K of local fields with $G = \operatorname{Gal}(L/K)$, we have $\hat{H}^0(G, L^{\times}) = K^{\times}/NL^{\times}$ by definition. Our goal is to show that $\hat{H}^0(G, L^{\times}) \simeq G^{\operatorname{ab}}$ canonically, i.e., the abelianization of G. Our plan for this lecture will be to define the Tate cohomology groups \hat{H}^i for each $i \in \mathbb{Z}$ (which is more complicated for non-cyclic groups), and then use them to begin working towards a proof of this fact.

Recall that out basic principle was that, given a homotopy $h: f \simeq g, f$ and g are now indistinguishable for all practical purposes (which we will take on faith). An application of this principle is the construction of cones or homotopy cokernels:

CLAIM 10.1. If $f: X \to Y$ is a map of complexes, then hCoker(f) (a.k.a. Cone(f)), characterized by the universal property that maps $hCoker(f) \to Z$ of chain complexes are equivalent to maps $g: Y \to Z$ plus a null-homotopy h of $g \circ f: X \to Z$, exists.

PROOF. We claim that the following chain complex is hCoker(f):

(10.1)
$$\cdots \to X^0 \oplus Y^{-1} \to X^1 \oplus Y^0 \to X^2 \oplus Y^1 \to \cdots$$

with differential

$$X^{i+1} \oplus Y^i \ni \begin{pmatrix} x \\ y \end{pmatrix} \stackrel{d}{\longmapsto} \begin{pmatrix} -dx \\ f(x) + dy \end{pmatrix} \in X^{i+2} \oplus Y^{i+1},$$

which we note increases the degree appropriately. We may summarize this differential as a matrix $\begin{pmatrix} -d & 0 \\ f & d \end{pmatrix}$, and we note that it squares to zero as

$$\begin{pmatrix} -d & 0 \\ f & d \end{pmatrix} \begin{pmatrix} -d & 0 \\ f & d \end{pmatrix} = \begin{pmatrix} d^2 & 0 \\ -fd + df & d^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

by the definition of a morphism of chain complexes and because both X and Y are complexes.

We now check that this chain complex satisfies the universal property of hCoker(f). So suppose we have a map $hCoker(f) \to Z$, so that the diagram

commutes. If we write such a map as $(x, y) \mapsto h(x) + g(y)$, then this means dh(x) + dg(y) = d(h(x) + g(y)) = h(-dx) + g(f(x) + dy) = -h(dx) + gf(x) + g(dy). Taking x = 0 implies dg = gd, so we must have $dh + hd = g \circ f$, hence h is a null-homotopy of $g \circ f$, as desired.

COROLLARY 10.2. The composition

$$X \to Y \to \operatorname{hCoker}(f)$$

is canonically null-homotopic (as an exercise, construct this null-homotopy explicitly!).

EXAMPLE 10.3. Let

 $X := (\dots \to 0 \to A \to 0 \to \dots) \quad \text{and} \quad Y := (\dots \to 0 \to B \to 0 \to \dots)$

for finite abelian groups A and B in degree 0, and let $f \colon A \to B$. Then

$$hCoker(f) = (\dots \to 0 \to A \xrightarrow{f} B \to 0 \to \dots),$$

with B in degree 0. Then we have

$$H^0$$
hCoker (f) = Coker (f) and H^{-1} hCoker (f) = Ker (f)

so we see that the language of chain complexes generalizes prior concepts.

NOTATION 10.4. For a chain complex X, let X[n] denote the *shift* of X by n places, that is, the chain complex with X^{i+n} in degree *i*, with the differential $(-1)^n d$ (where d denotes the differential for X). So for instance, $X[1] = h\operatorname{Coker}(X \to 0)$. The content of this is that giving a null-homotopy of $0: X \to Y$ is equivalent to giving a map $X[1] \to Y$.

LEMMA 10.5. For all maps $f: X \to Y$, the sequence

$$H^i X \to H^i Y \to H^i h \operatorname{Coker}(f)$$

is exact for all i.

PROOF. The composition is zero by Lemma 9.10 because $X \to Y \to h\text{Coker}(f)$ is null-homotopic. To show exactness, let $y \in Y^i$ such that dy = 0, and suppose that its image in $H^i h\text{Coker}(f)$ is zero, so that

$$\begin{pmatrix} 0\\ y \end{pmatrix} = \begin{pmatrix} -d & 0\\ f & d \end{pmatrix} \begin{pmatrix} \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} -d\alpha\\ f(\alpha) + d\beta \end{pmatrix}$$

for some $\alpha \in X^i$ with $d\alpha = 0$ and $\beta \in Y^{i-1}$. Then $f(\alpha) + d\beta = y$ implies $f(\alpha) = y$ in H^iY , as desired.

CLAIM 10.6. There is also a notion of the homotopy kernel hKer(f), defined by the universal property that maps $Z \to h\text{Ker}(f)$ are equivalent to maps $Z \to X$ plus the data of a null-homotopy of the composition $Z \to X \to Y$. In particular, hKer(f) = hCoker(f)[-1].

EXAMPLE 10.7. Let $f \colon A \to B$ be a map of abelian groups (in degree 0 as before). Then

$$\operatorname{hCoker}(f) = (\dots \to 0 \to A \xrightarrow{f} B \to 0 \to 0 \to \dots)$$
$$\operatorname{hKer}(f) = (\dots \to 0 \to 0 \to A \xrightarrow{f} B \to 0 \to \dots)$$

where $h\text{Ker}(f)^0 = A$. The homotopy cokernel also recovers the kernel and cokernel in its cohomology.

CLAIM 10.8. The composition

 $X \xrightarrow{f} Y \to \operatorname{hCoker}(f)$

is null-homotopic, so there exists a canonical map

$$X \to \mathrm{hKer}(Y \to \mathrm{hCoker}(f)),$$

where we refer to the latter term as "the mapping cylinder." This map is a homotopy equivalence.

DEFINITION 10.9. A map $f: X \to Y$ is a homotopy equivalence if there exist a map $g: Y \to X$ and homotopies $gf \simeq id_X$ and $fg \simeq id_Y$, in which case we write $X \simeq Y$.

It is a quasi-isomorphism if $H^i(f): H^i(X) \xrightarrow{\sim} H^i(Y)$ is an isomorphism for each i (i.e., X and Y are equal at the level of cohomology).

CLAIM 10.10. If $f: X \to Y$ is a homotopy equivalence, then it is a quasiisomorphism.

PROOF. This is an immediate consequence of Lemma 9.10, which ensures that f and g are inverses at the level of cohomology.

COROLLARY 10.11. Given $f: X \to Y$, there is a long exact sequence

 $\cdots \to H^{i-1}\mathrm{hCoker}(f) \to H^i X \to H^i Y \to H^i \mathrm{hCoker}(f) \to H^{i+1} X \to \cdots$

PROOF. Letting g denote the map $Y \to hCoker(f)$, the composition

 $Y \xrightarrow{g} hCoker(f) \to hCoker(g) = hKer(g)[1] \simeq X[1]$

is null-homotopic by Corollary 10.2, and the homotopy equivalence is by Claim 10.8. So by Lemma 10.5, the sequence

$$H^i Y \to H^i h \operatorname{Coker}(f) \to H^i X[1] = H^{i+1} X$$

is exact; a further application of Lemma 10.5 shows the claim.

CLAIM 10.12. Suppose $f^i \colon X^i \hookrightarrow Y^i$ is injective for all *i*. Then hCoker $(f) \to Y/X$ (i.e., the complex with Y^i/X^i in degree *i*) is a quasi-isomorphism.

EXAMPLE 10.13. If $f: A \hookrightarrow B$ is a map of abelian groups in degree 0, then the map $hCoker(f) \to B/A$ looks like

It's easy to see that this is indeed a quasi-isomorphism. Note that there is a dual statement, that if f^i is surjective in each degree, then the homotopy kernel is quasi-isomorphic to the naive kernel.

REMARK 10.14. If A is an associative algebra (e.g. \mathbb{Z} or $\mathbb{Z}[G]$), then we can have chain complexes of A-modules

$$\cdots \to X^{-1} \xrightarrow{d} X^0 \xrightarrow{d} X^1 \to \cdots,$$

where the X^i are A-modules and d is a map of A-modules. Here the cohomologies will also be A-modules.

Now, our original problem was to define Tate cohomology for a finite group G acting on some A. Note that

$$\hat{H}^0(G, A) = A^G / \mathcal{N}(A) = \operatorname{Coker}(\mathcal{N} \colon A \to A^G).$$

In fact, we can do better than N: $A \to A^G$; the norm map factors through what we will call the coinvariants.

DEFINITION 10.15. The *coinvariants* of A are $A_G := A / \sum_{g \in G} (g-1)A$, which satisfies the universal property that it is the maximal quotient of A with gx = x holding for all $x \in A$ and $g \in G$.

Note that we can think of the invariants A^G as being the intersection of the kernels of each (g-1)A, so it is the maximal submodule of A for which gx = x holds similarly. Then the norm map factors as

$$A \xrightarrow{\mathrm{N}} A^{G}$$

$$\downarrow^{\mathrm{N}} A^{G}$$

$$A_{G}.$$

Our plan is now to define derived (complex) versions of A_G and A^G called $A_{hG} \xrightarrow{N} A^{hG}$, and Tate cohomology will be the homotopy cokernel of this map. The basic observation is that \mathbb{Z} is a *G*-module (i.e. $\mathbb{Z}[G]$ acts on \mathbb{Z}) in a trivial way, with every $g \in G$ as the identity automorphism. If M is a *G*-module, then $M^G = \text{Hom}_G(\mathbb{Z}, M)$ (because the image of 1 in M must be *G*-invariant and corresponds to the element of M^G) and $M_G = M \otimes_{\mathbb{Z}[G]} \mathbb{Z}$. Indeed, let $I \subseteq A$ be an ideal acting on M. Then $A/I \otimes_A M = M/IM$ by the right-exactness of tensor products. Here, $\mathbb{Z} = \mathbb{Z}[G]/I$, where I is the "augmentation ideal" generated by elements g - 1 and therefore $M_G = M/I$ as desired.

Now we have the general problem where A is an associative algebra and M an associative A-module, and we would like the "derive" the functors $-\otimes_A M$ and $\operatorname{Hom}_A(M, -)$. These should take chain complexes of A-modules and produce complexes of abelian groups, preserving cones and quasi-isomorphisms. We'll begin working on this in the next lecture. MIT OpenCourseWare https://ocw.mit.edu

18.786 Number Theory II: Class Field Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.