
LECTURE 1

Introduction

In this class, we will begin by studying the quadratic version of Class Field
Theory (cft), with an emphasis on explicit cft. We will then develop a cohomo-
logical approach to cft. Finally, we may discuss additional topics, such as explicit
cft (in greater depth), the Fontaine-Herr approach to Local Class Field Theory
(lcft), algebraic groups, or Tate duality.

Class Field Theory emerged in the nineteenth century from at least three lines
of inquiry. The first was the question of solvability by radicals: which algebraic
numbers in Q could be expressed using nth roots, sums, etc.? Abel and Galois
showed that an irreducible polynomial f(x) ∈ K[x], for some number field K, has
roots that can be expressed via radicals if and only if the Galois group of the
splitting field of f is solvable, that is, the splitting field of f is an iterated extension
of abelian extensions such as

Q
Z/2Z
⊆ Q(ζ3)

Z/3Z
⊆ Q(ζ3,

3
√

2),

where we have written the Galois group of each subextension above its respective
inclusion. This criterion reduces the problem of identifying which algebraic numbers
can be written in terms of radicals to understanding abelian (or even cyclic) exten-
sions of number fields. Unfortunately, this problem hasn’t been solved, though one
can dream that cutting edge research is coming closer. However, abelian extensions
of Q are known:

Theorem 1.1 (Kronecker–Weber). Every abelian extension of Q is contained
in Q(ζn) for some n, where ζn is a primitive nth root of unity.

That is, if the splitting field of f ∈ Q[x] has an abelian Galois group, then all
(equivalently, some) roots of f can be written as rational functions of ζn for some
n. As a brief reminder, [Q(ζn) : Q] = ϕ(n) (i.e., the Euler totient function), and
Gal(Q(ζn)/Q) = (Z/nZ)×, with an element m ∈ (Z/nZ)× acting as ζn 7→ ζmn . cft
is essentially equivalent to the Kronecker–Weber theorem for Q, but gives additional
(though inexplicit) control of the situation for general number fields.

The second question was that of finding identities for algebraic numbers. As
we will see, Gauss explained that non-obvious identities in Q have non-trivial arith-
metic consequences. For instance, identites like
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are predicted by the Kronecker–Weber theorem (since these numbers have an as-
sociated abelian Galois group Z/2Z). These arithmetic consequences indicate that
we should attempt to understand such identities more fully.

Finally, the third area was solvability of Diophantine equations. The following
is an example of a typical theorem:

Theorem 1.2 (Hasse Principle). Let K be a number field, and

q(x1, . . . , xn) =
∑
i

aix
2
i +

∑
i 6=j

aijxixj

for ai, aij ∈ K. Then, for any y ∈ K, the equation

q(x1, . . . , xn) = y

has a solution if and only if it does in R and in Qp for all primes p.

Checking for solutions over R is easy, and over Qp the problem reduces to
elementary congruence properties; it turns out that this problem can be solved
entirely algorithmically. We can recast such problems as asking if y ∈ Q is a norm
in a quadratic extension Q(

√
d)/Q, at least for the form N(x + y

√
d) = x2 − dy2

(where x, y ∈ Q), which is the hardest case of the above anyways. This question,
and the broader idea of connecting local and global, will make a reappearance.

We now turn to the statements of the main theorems of cft, which perhaps
are not yet so inspiring. Let K a local field, so that either K is archimedean,
in which case K = R,C, or K is nonarchimedian, in which case K/Qp or K =
Fpn((t)) for some p and n. Let Ksep denote its separable closure. Observe that
if K is any field with abelian extensions Ksep/K1/K and Ksep/K2/K (which are
necessarily Galois), then the compositum K1 · K2 is also abelian, justifying the
following definition:

Definition 1.3. The maximal abelian extension Kab/K is the compositum of
all abelian extensions Ksep/K ′/K, and Galab(K) := Gal(Kab/K) is the abelian-
ization of the absolute Galois group Gal(K) := Gal(Ksep/K).

We also recall the following definition:

Definition 1.4. For a group G, the inverse limit

Ĝ := lim←−
HCG

[G:H]<∞

G/H

over quotients by finite-index normal subgroups is the profinite completion of G.

We can now state the main theorem of Local Class Field Theory:

Theorem 1.5 (Main Theorem of lcft). For any finite extension K/Qp, there
is a canonical isomorphism

Galab(K) ' K̂×

of profinite groups.

Example 1.6. The first-order structure of K× is given by the short exact
sequence

(1.1) 1→ O×K → K×
v−→ Z→ 0,
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where v is the valuation homomorphism taken with respect to the maximal ideal
pK ⊆ OK (i.e., it sends a uniformizer ofOK to 1); the ring of integersO×K is profinite
and open in K×. The second-order structure of K× is given by the inverse limit

O×K = lim←−
n

O×K/(1 + pnK),

so that (1.1) becomes

1→ O×K → K̂×
v̂−→ Ẑ→ 0

after taking profinite completions.
Now, for any finite Galois extension L/K, there is an action of Gal(L/K) on

L that preserves OL and pL. Thus, it descends to an action on kL := OL/pL
fixing kK := OK/pL; these are finite fields, say kL = Fqn and kK = Fq for some
prime-power q. We therefore have a map

Gal(L/K)→ Gal(kL/kK) = Z/nZ,

which is an isomorphism if L/K is unramified; the group Gal(kL/kK) is generated
by the Frobenius automorphism x 7→ xq. Taking inverse limits over all such L/K
then yields a homomorphism

Gal(K)→ Gal(k) = Ẑ

given by the Frobenius elements, which factors through Galab(K) by the universal
property of abelianization. Under lcft, this map coincides with the map v̂ above.

Now, recall that the ring of adèles of a number field F is defined as the direct
limit

AF := lim−→
S

(∏
v∈S

Fv ×
∏
v/∈S

OFv

)
over finite sets S of places F . It comes with a diagonal embedding

F ↪→ AF ,

by which F is discretely embedded (think Z ↪→ R). Morally, AF amalgamates all
local information about F , while this embedding encodes its global aspects. Inside
AF lies the group A×F of units, topologized via the direct limit

A×F = lim−→
S

(∏
v∈S

F×v ×
∏
v/∈S

O×Fv

)
,

with S as before (and all terms open in A×F ), rather than the finer subspace topology.
We are now ready to state the main theorem of Global Class Field Theory (gcft):

Theorem 1.7 (Main Theorem of gcft). For any finite extension F/Q, there
is a canonical isomorphism

Galab(F ) ' Â×F /F×

of profinite groups.
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These two main theorems are compatible in the following manner. If v is a
place of a global field F with algebraic closure F , then we have maps

F Fv

F F v,

which induce (injective) maps

Gal(Fv)→ Gal(F ),

Galab(Fv)→ Galab(F ).

The diagram

F×v A×F /F×

Galab(Fv) Galab(F ),

x 7→(1,...,1,x,1,...)

LCFT GCFT

whose vertical arrows are obtained by composing the the natural map from each
group to its profinite completion with the respective identifications of the main
theorems of Local and Global cft, then commutes.

We will begin by spending several weeks setting up cft for quadratic extensions
of local fields and Q, since this nicely captures what is exciting about the subject,
and is more hands-on than the cohomological approach we will develop afterwards.
To start, let K be any field of characteristic char(K) 6= 2. Let Gal2(K) be the
maximal quotient of Gal(K) in which g2 = 1 for all g ∈ Gal(K). It is necessarily
abelian, so there is a surjection

Galab(K)� Gal2(K),

and it carries the structure of an F2-vector space.

Claim 1.8. There is a canonical isomorphism

Gal2(K) ' (K×/(K×)2)∨ := Hom(K×/(K×)2,Z/2Z)

of F2-vector spaces.

Proof. We first construct such a map as follows: given σ ∈ Gal2(K), define
χσ ∈ (K×/(K×)2)∨ by

χσ : K×/(K×)2 → Z/2Z,

d 7→

{
0 if σ(

√
d) =

√
d,

1 if σ(
√
d) = −

√
d.

It is easy to see that this is, in fact, a homomorphism: given σ1, σ2 ∈ Gal2(K) and
d ∈ K×/(K×)2, we have

(σ1σ2)(
√
d) = (−1)χσ1 (d)(−1)χσ1 (d)

√
d,

which implies that
χσ1σ2

= χσ1
+ χσ2

.
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Now, since both the source and target are profinite 2-torsion abelian groups, it
suffices to show that this map is an isomorphism after taking continuous duals. As
usual, we have

Homcts((K
×/(K×)2)∨,Z/2Z) = K×/(K×)2,

and giving a continuous map Gal2(K) → Z/2Z is the same as giving a quadratic
extension Ksep/F/K, which has the form K(

√
d) with d ∈ K× defined up to

multiplication by a square. �

Example 1.9. In the case K = Q, this result gives an isomorphism

Q×/(Q×)2 '−→
⊕
p

Z/2Z⊕ Z/2Z,

where the direct sum ranges over all primes p. However, it’s not at all clear how to
compare this group to the profinite completion[

Q×\A×Q/(A
×
Q )2
]∧
,

as the main theorem of gcft would have us do.

Now, if K is a local field, then lcft predicts that K×/(K×)2 is canonically
self-dual; the pairing

(·, ·) : K×/(K×)2 ×K×/(K×)2 → {1,−1}
realizing this duality is called the Hilbert symbol. Our goal in the next few lectures
will be to construct it and show that this is indeed the case.
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