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23 Tate cohomology 

In this lecture we introduce a variant of group cohomology known as Tate cohomology, and 
we define the Herbrand quotient (a ratio of cardinalities of two Tate cohomology groups), 
which will play a key role in our proof of Artin reciprocity. We begin with a brief review 
of group cohomology, restricting our attention to the minimum we need to define the Tate 
cohomology groups we will use. At a number of points we will need to appeal to some stan­
dard results from homological algebra whose proofs can be found in Section 23.6. For those 
seeking a more thorough introduction to group cohomology, see [1]; for general background 
on homological algebra, we recommend [7]. 

23.1 Group cohomology 

Definition 23.1. Let G be a group. A G-module is an abelian group A equipped with a 
1G-action compatible with its group structure: g(a + b) = ga + gb for all g ∈ G, a, b ∈ A. 

This implies |ga| = |a| (where |a| := #(a) is the order of a); in particular ga = 0 ⇔ a = 0. 
A trivial G-module is an abelian group with trivial G-action: ga = a for all g ∈ G, a ∈ A 

(so every abelian group can be viewed as a trivial G-module). A morphism of G-modules 
is a morphism of abelian groups α : A → B satisfying α(ga) = gα(a). Kernels, images, 
quotients, and direct sums of G-modules are also G-modules. 

Definition 23.2. Let A be a G-module. The G-invariants of A constitute the G-module 

AG := {a ∈ A : ga = a for all g ∈ G} 

consisting of elements fixed by G. It is the largest trivial G-submodule of A. 

Definition 23.3. Let A be a G-module and let n ∈ Z≥0. The group of n-cochains is 
the abelian group Cn(G, A) := Map(Gn, A) of maps of sets f : Gn → A under pointwise 
addition. We have C0(G, A) c A, since G0 = {1} is a singleton set. The nth coboundary 
map dn : Cn(G, A) → Cn+1(G, A) is the homomorphism of abelian groups defined by 

dn(f)(g0, . . . , gn) := g0f(g1, . . . , gn) − f(g0g1, g2, . . . , g1) + f(g0, g1g2, . . . , gn) 

· · · + (−1)nf(g0, . . . , gi−1, gn−1gn) + (−1)n+1f(g0, . . . , gn−1). 

The group C(G, A) contains subgroups of n-cocycles and n-coboundaries defined by 

Zn(G, A) := ker dn and Bn(G, A) := im dn−1 , 

with B0(G, A) := {0}. 

The coboundary map satisfies dn+1 ◦ dn = 0 for all n ≥ 0 (this can be verified directly, 
but we will prove it in the next section), thus Bn(G, A) ⊆ Zn(G, A) for n ≥ 0 and the 
groups Cn(G, A) with connecting maps dn form a cochain complex 

d0 d1 

0 −→ C0(G, A) −→ C1(G, A) −→ C2(G, A) −→ · · · 

that we may denote CA. In general, a cochain complex (of abelian groups) is simply a 
sequence of homomorphisms dn that satisfy dn+1 ◦ dn = 0. Cochain complexes form a 
category whose morphisms are commutative diagrams with cochain complexes as rows. 

1Here we put the G-action on the left (one can also define right G-modules), and for the sake of readability 
we write A additively, even though we will be primarily interested in cases where A is a multiplicative group. 
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Definition 23.4. Let A be a G-module. The nth cohomology group of G with coefficients 
in A is the abelian group 

Hn(G, A) := Zn(G, A)/Bn(G, A). 

Example 23.5. We can work out the first few cohomology groups explicitly by writing out 
the coboundary maps and computing kernels and images: 

•	 d0 : C0(G, A) → C1(G, A) is defined by d0(a)(g) := ga − a (note C0(G, A) c A). 

•	 H0(A, G) c ker d0 = AG (note B0(G, A) = {0}). 
•	 im d0 = {f : G → A | ∃a ∈ A : f(g) = ga − a for all g ∈ G}

(principal crossed homomorphisms).
 

•	 d1 : C1(G, A) → C2(G, A) is defined by d1(f)(g, h) := gf(h) − f(gh) + f(g). 

•	 ker d1 = {f : G → A | f(gh) = f(g) + gf(h) for all g ∈ G}

(crossed homomorphisms).
 

•	 H1(G, A) = crossed homomorphisms modulo principal crossed homomorphisms. 

•	 If A is a trivial G-module then H1(G, A) c Hom(G, A). 
←	←←←

Lemma 23.6. Let α : A → B be a morphism of G-modules. We have induced group ho­
momorphisms αn : Cn(G, A) → Cn(G, B) defined by f  → α ◦ f that commute with the 
coboundary maps. In particular, αn maps cocycles to cocycles and coboundaries to cobound­

←	←←←
aries and thus induces homomorphisms αn : Hn(G, A) → Hn(G, B) of cohomology groups, 
and we have a morphism of cochain complexes α : CA → CB : 

d0	 d1 d2 
0 → C0(G, A) → C1(G, A) → C2(G, A) → · · · 

α0 α1 α2 

d0 d1	 d2 
0 → C0(G, B) → C1(G, B) → C2(G, B) → . . . 

Proof. Consider any n ≥ 0. For all f ∈ Cn(G, A), and g0, . . . , gn ∈ G we have  	  
αn+1(dn(f)(g0, . . . , gn)) = αn+1 g0f(g1, . . . , gn) − · · · + (−1)n+1f(g0, . . . , gn−1)

= g0(α ◦ f)(g1, . . . , gn) − · · · + (−1)n+1(α ◦ f)(g0, . . . , gn−1) 

= dn(α ◦ f)(g0, . . . , gn) = dn(αn(f))(g0, . . . , gn), 

thus αn+1 ◦ dn = dn ◦ αn . The lemma follows. 

Lemma 23.6 implies that we have a family of functors Hn(G, •) from the category of G-
modules to the category of abelian groups (note that id ◦f = f and (α ◦ β) ◦ f = α ◦ (β ◦ f)), 
and also a functor from the category of G-modules to the category of cochain complexes. 

Lemma 23.7. Suppose that we have a short exact sequence of G-modules 

α β 
0 −→ A −→ B −→ C −→ 0. 

Then for every n ≥ 0 we have a corresponding exact sequence of n-cochains 

αn βn 

0 −→ Cn(G, A) −→ Cn(G, B) −→ Cn(G, C) −→ 0. 
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Proof. The injectivity of αn follows from the injectivity of α. If f ∈ ker βn, then β ◦ f = 0 
and im f ⊆ ker β = im α. Via the bijection α−1 : im α → A we can define α−1 ◦ f ∈ 
Cn(G, A), thus im αn ⊆ ker βn . We also have ker βn ⊆ αn, since β ◦ α ◦ f = 0 ◦ f = 0 
for all f ∈ Cn(G, B), and exactness at Cn(G, B) follows. Every f ∈ Cn(G, C) satisfies 
im f ⊆ C = im β, and we can define h ∈ Cn(G, B) satisfying β◦h = f : for each g0, . . . , gn let 
h(g0, . . . , gn) be any element of β−1(f(g0, . . . , gn)). Thus f ∈ im βn and βn is surjective. 

Lemmas 23.6 and 23.7 together imply that we have an exact functor from the category 
of G-modules to the category of cochain complexes. 

Theorem 23.8. Every short exact sequence of G-modules 

α β 
0 −→ A −→ B −→ C −→ 0 

induces a long exact sequence of cohomology groups 

α0 β0 δ0 

0 → H0(G, A) −→ H0(G, B) −→ H0(G, C) −→ H1(G, A) −→ · · · 

and commutative diagrams of short exact sequences of G-modules induce corresponding com­
mutative diagrams of long exact sequences of cohomology groups. 

Proof. Lemmas 23.6 and 23.7 gives us the commutative diagram 

→ 0 
βn 

0 → Cn(G, A) αn 
→ Cn(G, B) → Cn(G, C)← ←
 ←
 ←


←



←



←

 

dn dn dn →



→



→

 βn+1 

Cn+1(G, A) αn+1 
→ Cn+1(G, B)← Cn+1(G, C)→ → → 0←←

dn 

We have Bn(G, A) ⊆ Zn(G, A) ⊆ Cn(G, A) −→ Bn+1(G, A) ⊆ Zn+1(G, A) ⊆ Cn+1, thus 
dn induces a homomorphism dn : Cn(G, A)/Bn(G, A) → Zn+1(G, A), and similarly for the 
G-modules B and C. The fact that αn maps coboundaries to coboundaries and cocycles 
to cocycles implies that we have induced maps Cn(G, A)/Bn(G, A) → Cn(G, B)/Bn(G, B) 
and Zn+1(G, B) → Zn+1(G, B); similar comments apply to βn . 

We thus have the following commutative diagram: 

βn
Cn(G,A) αn 

0
 ←


Cn(G,B) Cn(G,C) 

←
 

→
 ←←

←←←

←
 

→
 

←
 

→
 

→Bn(G,A) Bn(G,B) Bn(G,C) 

dn dn dn 

αn+1 βn+1 

→ Zn+1(G, A) → Zn+1(G, B) → Zn+1(G, C) 

→
 → 0
 

0
 ←

The kernels of the vertical maps dn are (by definition) the cohomology groups Hn(G, A), 
Hn(G, B), Hn(G, C), and the cokernels are Hn+1(G, A), Hn+1(G, B), Hn+1(G, C). Apply­
ing the snake lemma yields the exact sequence 

βn αn+1 βn+1αn δn 

Hn(G, A) −→Hn(G, B) −→Hn(G, C) −→Hn+1(G, A) −→ Hn+1(G, B) −→ Hn+1(G, C), 

where αn and βn are the homomorphisms in cohomology induced by α and β (coming from 
αn and βn in the previous diagram via Lemma 23.6), and the connecting homomorphism δn 

given by the snake lemma can be explicitly described as 

δn : Hn(G, C) → Hn+1(G, A) 

[f ]  → [α−1 ◦ dn(f̂)] 
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where [f ] denotes the cohomology class of a cocycle f ∈ Cn(G, C) and f̂  ∈ Cn(G, B) is a 
cochain satisfying β ◦ f̂ = f . Here α−1 denotes the inverse of the isomorphism A → α(A). 
The fact that δn is well defined (independent of the choice of f̂) is part of the snake lemma. 
The map H0(G, A) → H0(G, B) is the restriction of α : A → B to AG, and is thus injective 
(recall that H0(G, A) c AG). This completes the first part of the proof. 

For the second part, suppose we have the following commutative diagram of short exact 
sequences of G-modules 

βα → 0→
 →
 →
0
 A
 B
 C
←
 ←
 ←
 ←


← ← ←

 

ϕφ ψ →→ →

 β'

α' 
A/ B/ C / → 0 

By Lemma 23.6, to verify the commutativity of the corresponding diagram of long exact 
sequences in cohomology we only need to check commutativity at squares of the form 

→
 →
 →
0
 ←
 ←
 ←
 ←


←
 

→
 

δn 
→ Hn+1(G, A) 

ϕn 

n'δ → 

←
 

→
 ←

←Hn(G, C) 

(1)
φn+1 

Hn(G, C /) Hn+1(G, A/) 

Let f : Gn → C be a cocycle and choose f̂  ∈ Cn(G, B) such that β ◦ f̂ = f . We have 

φn+1(δn([f ])) = φn+1([α−1 ◦ dn(f̂)] = [φ ◦ α−1 ◦ dn(f̂)]. 

Noting that ϕ ◦ f = ϕ ◦ β ◦ f̂ = β/ ◦ ψ ◦ f̂  and φ ◦ α−1 = α/−1 ◦ ψ (as maps α(A) → A/) yields 

δ/
n
(ϕn([f ]) = δ/n([β/ ◦ ψ ◦ f ]) = [α/−1 ◦ dn(ψ ◦ f̂)] = [α/−1 ◦ ψ ◦ dn(f̂)] = [φ ◦ α−1 ◦ dn(f̂)], 

thus diagram (1) commutes as desired. 

Definition 23.9. A family of functors F n from the category of G-modules to the category 
of abelian groups that associates to each short exact sequence of G-modules a long exact 
sequence of abelian groups such that commutative diagrams of short exact sequences yield 
commutative diagrams of long exact sequences is called a δ-functor. A δ-functor is said 
to be cohomological if the connecting homomorphisms in long exact sequences are of the 
form δn : F n(G, C) → F n+1(G, A). If we instead have δn : F n+1(G, C) → F n(G, A) then 
the δ-functor is homological. 

Theorem 23.54 implies that the family of functors Hn(G, •) is a cohomological δ-functor. 
In fact is the universal cohomological δ-functor (it satisfies a universal property that deter­
mines it up to a unique isomorphism of δ-functors), but we will not explore this further. 

23.2 Cohomology via free resolutions  
Recall that the group ring Z[G] consists of formal sums agg indexed by g ∈ G with g 
coefficients ag ∈ Z, all but finitely many zero. Multiplication is given by Z-linearly extending 
the group operation in G; the ring Z[G] is commutative if and only if G is. As an abelian 
group under addition, Z[G] is the free Z-module with basis G. 

The notion of a G-module defined in the previous section is equivalent to that of a 
(left) Z[G]-module: to define multiplication by Z[G] one must define a G-action, and the 
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�

G-action on a G-module extends Z-linearly, since every G-module is also a Z-module. The 
multiplicative identity 1 of the ring Z[G] is the identity element of G; the additive identity 0 

2is the empty sum, which acts on A by sending a ∈ A to the identity element of A. 
For any n ≥ 0 we view Z[Gn] as a G-module with G acting diagonally on the left: 

g · (g1, . . . , gn) := (gg1, . . . , ggn). This makes Z[G0] = Z a trivial G-module (here we are 
viewing the empty tuple as the identity element of the trivial group G0). 

Definition 23.10. Let G be a group. The standard resolution of Z by G-modules is the 
exact sequence of G-module homomorphisms 

dn d1 d0· · · −→ Z[Gn+1] −→ Z[Gn] −→ · · · −→ Z[G] −→ Z −→ 0, 

where the boundary maps dn are defined by 

n 
dn(g0, . . . , gn) := (−1)i(g0, . . . , ĝi, . . . , gn) 

i=0 

and extended Z-linearly (the notation ĝi means omit gi from the tuple). The map d0 sends 
each g ∈ G to 1, and extends to the map agg  → ag, which is also known as the g g 
augmentation map and may be denoted ε. 

Let us verify the exactness of the standard resolution. 

Lemma 23.11. The standard resolution of Z by G-modules is exact. 

Proof. The map d0 is clearly surjective. To check im dn+1 ⊆ ker dn it suffices to note that 
for any g0, . . . , gn ∈ G we have   

dn(dn+1(g0, . . . , gn)) = (−1)i+j (g0, . . . , ĝj , . . . , ĝi . . . , gn) +
0≤i≤n 0≤j<i   

(−1)i+j−1(g0, . . . , ĝi, . . . , ĝj , . . . , gn) = 0 
i<j≤n 

] ⊆ Z[Gn+2]Let Gn+1 be the subgroup 1 × Gn of Gn+1, and let h : Z[Gn+1] → Z[Gn+2 
1 1 

be the Z-linear map defined by (g0, . . . , gn+1)  → (1, g0, . . . , gn+1). For x ∈ Z[Gn+1] we have 
∩ Z[Gn+1dn+1(h(x)) ∈ x + Z[Gn+1], and if x ∈ ker dn then x − dn+1(h(x)) ∈ ker dn ], since 1 1 

∩ Z[Gn+1im dn+1 ⊆ ker dn. To prove ker dn ⊆ im dn+1, it suffices to show ker dn ] ⊆ im dn+1.1 
For n = 0 we have ker d0 ∩ Z[G1

1] = {0}, and we now proceed by induction on n ≥ 1. 
⊆ Gn+1Let Gn+1 := 1 × 1 × Gn−1 . We can write the free Z-module Z[Gn+1] as the 11 1 1 

internal direct sum Z[Gn+1]+X, where X is generated by elements of the form (1, g1, . . . , gn)11 
with g1  1 (if G = {1} then X = {0}). We have d(x)(g1, . . . , gn) = x(1, g1, . . . , gn= ) (here 
we use functional notation) for all x ∈ X, since g1  = {0}.= 1, and this implies X ∩ ker dn 

∩ Z[Gn+1It thus suffices to show ker dn ] ⊆ im dn+1.11 
∩ Z[Gn+1Let x ∈ ker dn ]. If n = 1 then x = d2(h(x)) ∈ im dn+1. For n ≥ 2, let 11 

π : Z[Gn+1] → Z[Gn−1] be the Z-linear map defined by (g0, g1, g2, . . . , gn)  → (g2, . . . , gn). We 
have π(x) ∈ ker dn−2 ⊂ im dn−1 (by the inductive hypothesis), and for any y ∈ d−1 (π(x))n−1

we have x = dn+1(h11(y)) ∈ im dn+1, where h11 : Z[Gn−1] → Z[Gn+1] is the Z-linear map 
∩ Z[Gn+1defined by (g0, . . . , gn−1)  → (g0, . . . , gn+1). Thus ker dn ] ⊆ im dn+1 as desired. 11 

2When A is written multiplicatively its identity is denoted 1 and one should think of 0 as acting via 
exponentiation (but for the moment we continue to use additive notation and view A as a left Z[G]-module). 
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Definition 23.12. Let R be a (not necessarily commutative) ring. A free resolution P of 
a (left) R-module M is an exact sequence of free (left) R-modules Pn 

dn+1 dn dn−1 d1 d0· · · −→ Pn+1 −→ Pn −→ · · · −→ P1 −→ M −→ 0. 

Free resolutions arise naturally as presentations of an R-module. Every R-module M 
admits a surjection from a free module (one can always take P1 to be the free R-module with 
basis M). This yields an exact sequence P1 → M → 0, and the kernel of the homomorphism 
on the left is itself an R-module that admits a surjection from a free R-module P2; continuing 
in this fashion yields a free resolution. 

Now let A be an abelian group. If we truncate the free resolution P by removing the 
R-module M and apply the contravariant left exact functor HomR(•, A) we obtain a cochain 
complex of R-modules3 

d∗ 
d∗ d∗ d∗ 

n+1 n n−1 1· · · ←− P ∗ ←− P ∗ ←− · · · ←− P ∗ ←− 0.n+1 n 1 

where d∗ 
n(ϕ) := ϕ ◦ dn. The maps d∗ 

n satisfy d∗ 
n+1 ◦ dn 

∗ = 0: for all ϕ ∈ HomR(Pn, A) we have 

(d ∗ 
n+1 ◦ d ∗ 

n)(ϕ) = (dn ◦ dn+1) 
∗ (ϕ) = ϕ ◦ dn ◦ dn+1 = ϕ ◦ 0 = 0. 

This cochain complex need not be exact, because the functor HomR(•, A) is not right-
exact,4 so we have potentially nontrivial cohomology groups ker dn

∗ 
+1/ im dn

∗ , which are 
denoted Extn 

R(M, A). A key result of homological algebra is that (up to isomorphism) these 
cohomology groups do not depend on the resolution P , only on A and M ; see Theorem 23.71. 

Recall that Z[G] is a free Z-module (with basis G), and for all n ≥ 0 we have 

Z[Gn+1] c Z[G](1, g1, . . . , gn). 
(g1,...,gn)∈Gn 

It follows that the standard resolution is a free resolution of Z by Z[G]-modules; note that Z, 
like any abelian group, can always be viewed as a trivial G-module, hence a Z[G]-module. 

With a free resolution in hand, we now want to consider the cochain complex 

d∗ 
n0 → HomZ[G](Z[G], A) −→ · · · −→ HomZ[G](Z[Gn], A) −→ HomZ[G](Z[Gn+1], A) −→ · · · 

where d∗ is defined by ϕ  → ϕ ◦ dn. Let SA denote this cochain complex. n 

Proposition 23.13. Let A be a G-module. For every n ≥ 0 we have an isomorphism of 
abelian groups 

∼
Φn : HomZ[G](Z[Gn+1], A) −→ Cn(G, A) 

that sends ϕ : Z[Gn+1] → A to the function f : Gn → A defined by 

f(g1, . . . , gn) := ϕ(1, g1, g1g2, . . . , g1g2 · · · gn). 

The isomorphisms Φn satisfy Φn+1 ◦ d∗ = dn ◦ Φn for all n ≥ 0 and thus define ann+1 
isomorphism of cochain complexes ΦA : SA → CA. 

3The intuition here is that P contains a presentation of M that effectively serves as a replacement for M . 
4Applying HomZ(•, Z) to 0 → Z → Q → Q/Z → 0 yields 0 ← Z ← 0 ← 0 ← 0, for example. 
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Proof. We first check that Φn is injective. Let ϕ ∈ ker Φn . Given g0, . . . , gn ∈ G, let 
−1	 −1hi := gi−1gi for 1 ≤ i ≤ n so that h1 · · · hi = g gi and observe that 0 

−1 −1ϕ(g0, . . . , gn) = g0ϕ(1, g 0 g1, . . . , g 0 gn) = g0ϕ(1, h1, h1h2, . . . , h1 · · · hn) = 0. 

so ϕ = 0 as desired. For surjectivity, let f ∈ Cn(G, A) and define ϕ ∈ HomZ[G](Z[Gn+1], A) 
−1 −1 −1via ϕ(g0, . . . , gn) := g0f(g g1, g g2, . . . , g ). For any g1, . . . , gn ∈ G we have 0 1 n−1gn

Φn(ϕ)(g1, . . . , gn) = ϕ(1, g1, g1g2, . . . , g1g2 · · · gn) = f(g1, . . . , gn), 

so f ∈ im Φn and Φn is surjective. 
It is clear from the definition that Φn(ϕ1 + ϕ2) = Φn(ϕ1) + Φn(ϕ2), so Φn is a bijective 

group homomorphism, hence an isomorphism. Finally, for any ϕ ∈ HomZ[G](Z[Gn+1], A) 
and g1, . . . , gn+1 ∈ G we have 

(Φn+1(d ∗ 
n+1(ϕ))(g1, . . . , gn+1) = d ∗ 

n+1(ϕ)(1, g1, g1g2, . . . , g1 · · · gn+1) 

= ϕ(dn+1(1, g1, g1g2, . . . , g1 · · · gn+1)) 
n+1 

= (−1)iϕ(1, g1, . . . , g1 · · · gi−i, g1 · · · gi+1, . . . , g1 · · · gn+1) 
i=0 

= g1Φ
n(ϕ)(g2, . . . , gn+1) 
n 

+	 (−1)iΦn(ϕ)(g1, . . . , gi−2, gi−1gi, gi+1, . . . , gn+1) 
i=1 

+ (−1)n+1Φn(ϕ)(g1, . . . , gn) 

= dn(Φn(ϕ))(g1, . . . , gn+1), 

which shows that Φn+1 ◦ d∗ = d∗ ◦ Φn as claimed. n+1 n 

Corollary 23.14. Let A be a G-module. The cochain complexes SA and CA have the same 
cohomology groups, in other words, Hn(G, A) c Extn (Z, A) for all n ≥ 0, and we can Z[G]

compute Hn(G, A) using any free resolution of Z by G-modules. 

Proof. This follows immediately from Proposition 23.13 and Theorem 23.71. 

Corollary 23.15. For any G-modules A and B we have 

Hn(G, A ⊕ B) c Hn(G, A) ⊕ Hn(G, B) 

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection 
maps for the direct sums on both sides. 

Proof. By Lemma 23.73, the functor ExtZ[G]n(Z, •) is an additive functor. 

Definition 23.16. A category containing finite coproducts (such as direct sums) in which 
each set of morphisms between objects has the structure of an abelian group whose addition 
distributes over composition (and vice versa) is called an additive category. A functor F 
between additive categories is an additive functor if it maps zero objects to zero objects 
and satisfies F (X ⊕ Y ) c F (X) ⊕ F (Y ), where the isomorphism commutes with the natural 
inclusion and projection maps for the direct sums on both sides. 
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Definition 23.17. Let G be a group and let A be an abelian group. The abelian group
 

CoIndG(A) := HomZ(Z[G], A) 

with G-action defined by (gϕ)(z) := ϕ(zg) is the coinduced G-module associated to A. 

Warning 23.18. Some texts [3, 5] use IndG(A) instead of CoIndG(A) to denote the G-
module HomZ(Z[G], A) and refer to is as “induced” rather than “coinduced”. Here we 
follow [1, 4, 7] and reserve the notation IndG(A) for the induced G-module Z[G] ⊗Z A 
defined below (see Definition 23.25). As shown by Lemma 23.27, this clash in terminology 
is fairly harmless when G is finite, since we then have IndG(A) c CoIndG(A). 

Lemma 23.19. Let G be a group and A an abelian group. Then H0(G, CoIndG(A)) c A 
and Hn(G, CoIndG(A)) = 0 for all n ≥ 1. 

Proof. For all n ≥ 1 we have an isomorphims of abelian groups 

∼
α : HomZ[G](Z[Gn], CoIndG(A)) −→ HomZ(Z[Gn], A) 

ϕ  → (z  → ϕ(z)(1)) 

(z  → (y  → φ(yz))) ← φ 

Indeed, 

α(α−1(φ)) = α(z  → (y  → φ(yz)))) = (z  → φ(z)) = φ,
 

α−1(α(ϕ)) = α−1(z  → ϕ(z)(1)) = (z  → (y  → ϕ(yz)(1))) = (z  → ϕ(z)) = ϕ.
 

Thus computing Hn(G, CoIndG(A)) using the standard resolution P of Z by G-modules 
is the same as computing Hn({1}, A) using the resolution P viewed as a resolution of Z 
by {1}-modules (abelian groups); note that Z[Gn] is also a free Z[{1}]-module, and the 
G-module morphisms dn in the standard resolution are also {1}-module morphisms (mor­
phisms of abelian groups). Therefore Hn(G, CoIndG(A)) c Hn({1}, A) for all n ≥ 0. 

But we can also compute Hn({1}, A) using the free resolution · · · → 0 → Z → Z → 0, 
which implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) c HomZ(Z, A) c A. 

23.3 Homology via free resolutions 

In the previous section we applied the contravariant functor HomZ[G](•, A) to the truncation 
of the standard resolution of Z by G-modules to get a cochain complex with cohomology 
groups Hn(G, A) c Extn (Z, A). If we do the same thing using the covariant functor Z]G]

• ⊗Z[G] A we get a chain complex (of Z-modules) 

dn∗ · · · −→ Z[Gn+1] ⊗Z[G] A −→ Z[Gn] ⊗Z[G] A −→ · · · −→ Z[G] ⊗Z[G] A −→ 0, 

where dn∗ is defined by (g0, . . . , gn) ⊗ a  → dn(g0, . . . , gn) ⊗ a. One minor technical point: in 
order for these tensor products to make sense we need to view Z[Gn] as a right Z[G]-module, 
so we define (g1, . . . , gn) · g := (g1g, . . . , gng); the corresponding G-module is isomorphic to 
the left Z[G]-module defined above (right action by g corresponds to left action by g−1). 

We then have homology groups ker dn∗/ im dn+1∗. As with the groups ExtZ[G]n(Z, A), 
we get the same homology groups using any free resolution of Z by right Z[G]-modules, and 

Z[G]
they are generically denoted Torn (Z, A); see Theorem 23.75. 
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Definition 23.20. Let A be a G-module. The nth homology group of G with coefficients 
Z[G]

in A is the abelian group Hn(G, A) := Torn (Z, A). If α : A → B is a morphism of G-
modules, the natural morphism αn : Hn(G, A) → Hn(G, B) is given by x ⊗ a  → x ⊗ ϕ(a). 
Each Hn(G, •) is a functor from the category of G-modules to the category of abelian groups. 

The family of functors Hn(G, •) is a homological δ-functor. 

Theorem 23.21. Every short exact sequence of G-modules 

α β 
0 −→ A −→ B −→ C −→ 0 

induces a long exact sequence of homology groups 

δ0 α0 β0· · · −→ H1(G, C) −→ H0(G, A) −→ H0(G, B) −→ H0(G, C) −→ 0, 

and commutative diagrams of short exact sequences of G-modules induce corresponding com­
mutative diagrams of long exact sequences of homology groups.
 

Proof. The proof is directly analogous to that of Theorem 23.8 (or see Theorem 23.50).
 

As with Hn(G, •), the functors Hn(G, •) are additive functors. 

Corollary 23.22. For any G-modules A and B we have 

Hn(G, A ⊕ B) c H(G, A) ⊕ Hn(G, B) 

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection 
maps for the direct sums on both sides. 

Z[G]
Proof. By Lemma 23.77, the functor Torn (Z, •) is an additive functor. 

For n = 0 we have 

H0(G, A) := TorZ[G]
(Z, A) = Z ⊗Z[G] A,0 

where we are viewing Z as a (right) Z[G]-module with G acting trivially; see Lemma 23.78 for 
a proof of the second equality. This means that agg ∈ Z[G] acts on Z via multiplication 
by the integer ag. This motivates the following definition. 

Definition 23.23. Let G be a group. The augmentation map ε : Z[G] → Z is the ring ho­
5momorphism agg  → ag. The augmentation ideal IG is the kernel of the augmentation 

map; it is a free Z-module with basis {g − 1 : g ∈ G}. 

The augmentation ideal IG is precisely the annihilator of the Z[G]-module Z; therefore 

Z ⊗Z[G] A c A/IGA. 

Definition 23.24. Let A be a G-module. The group of G-coinvariants of A is the G-module 

AG := A/IGA; 

it is the largest trivial G-module that is a quotient of A. 

5The augmentation map is the boundary map d0 in the standard resolution of Z by G-modules. 
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We thus have H0(G, A) c AG and H0(G, A) c AG . 

Definition 23.25. Let G be a group and let A be an abelian group. The abelian group 

IndG(A) := Z[G] ⊗Z A 

with G-action defined by g(z ⊗ a) = (gz) ⊗ a is the induced G-module associated to A. 

Lemma 23.26. Let G be a group and A an abelian group. Then H0(G, IndG(A)) c A and 
Hn(G, IndG(A)) = 0 for all n ≥ 1. 

Proof. Viewing Z[Gn] as a right Z[G]-module and Z[G] as a left Z[G]-module, for all n ≥ 1, 

Z[Gn] ⊗Z[G] (Z[G] ⊗Z A) c (Z[Gn] ⊗Z[G] Z[G]) ⊗Z A c Z[Gn] ⊗Z A, 

by associativity of the tensor product (and the fact that M ⊗R R c M for any right R-
module M). This implies that computing Hn(G, IndG(A)) using the standard resolution P 
of Z by (right) G-modules is the same as computing Hn({1}, A) using the resolution P 
viewed as a resolution of Z by {1}-modules (abelian groups). Thus 

(G, IndG(A)) = TorZ[G](Z, IndG(A)) c TorZ(Z, A) = Hn({1}, A).Hn n n

But we can also compute Hn({1}, A) using the free resolution · · · → 0 → Z → Z → 0, which
 
implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) c Z ⊗ A c A.
 

Lemma 23.27. Let G be a finite group and A an abelian group. The G-modules IndG(A)
 
and CoIndG(A) are isomorphic.
 

Proof. We claim that we have a canonical G-module isomorphism given by
 

∼
α : CoIndG(A) −→ IndG(A) 

ϕ  → g −1 ⊗ ϕ(g) 
g∈G 

(g −1  → a) ← g ⊗ a 

−1where (g  → a)(h) = 0 for h ∈ G − {g−1}. It is obvious that α and α−1 are inverse 
homomorphisms of abelian groups, we just need to check that there are morphisms of G-
modules. For any h ∈ G and ϕ ∈ CoIndG(A) we have 

α(hϕ) = g −1 ⊗ (hϕ)(g) = h (gh)−1 ⊗ ϕ(gh) = h g −1 ⊗ ϕ(g) = hα(ϕ), 
g∈G g∈G g∈G 

and for any h ∈ G and g ⊗ a ∈ IndG(A) we have 

α−1(h(g ⊗ a)) = α−1(hg ⊗ a) = ((hg)−1  → a) = h(g −1  → a) = hα−1(g ⊗ a), 

since for ϕ = (g−1  → a) the identity (hϕ)(z) = ϕ(zh) implies hϕ = ((hg)−1  → a). 

Corollary 23.28. Let G be a finite group, A be an abelian group, and let B be IndG(A) or 
CoIndG(A). Then H0(G, B) c H0(G, B) c A and Hn(G, B) = Hn(G, B) = 0 for all n ≥ 1. 

Proof. This follows immediately from Lemmas 23.19, 23.26, 23.27. 
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23.4 Tate cohomology 

We now assume that G is a finite group. 

Definition 23.29. The norm element of Z[G] is NG := g∈G g. 

Lemma 23.30. Let A be a G-module and let NG : A → A be the G-module endomorphism 
a  → NGa. We then have IGA ⊆ ker NG and im NG ⊆ AG, thus NG induces a morphism 
N̂G : AG → AG of trivial G-modules. 

Proof. We have gNG = NG for all g ∈ G, so im NG ⊆ AG, and NG(g − 1) = 0 for all g ∈ G, 
so NG annihilates the augmentation ideal IG and IGA ⊆ ker NG. The lemma follows. 

Definition 23.31. Let A be a G-module for a finite group G. For n ≥ 0 the Tate cohomology 
and homology groups are defined by   

coker N̂G for n = 0 ker N̂G for n = 0 
Ĥn(G, A) := Ĥn(G, A) :=

Hn(G, A) for n > 0 Hn(G, A) for n > 0 

Ĥ−n(G, A) := Ĥn−1(G, A) Ĥ−n(G, A) := Ĥn−1(G, A). 

Note that Ĥ0(G, A) is a quotient of H0(G, A) c AG (the largest trivial G-module in A) and 
Ĥ0(G, A) is a submodule of H0(G, A) c AG (the largest trivial G-module quotient of A). 

Thus any morphism of G-modules induces natural morphisms of Tate cohomology and 
homology groups in degree n = 0 (and all other degrees, as we already know). We thus 
have functors Ĥn(G, •) and Ĥn(G, •) from the category of G-modules to the category of 
abelian groups. 

←←←

Given that every Tate homology group is also a Tate cohomology group, in practice one 
usually refers only to the groups Ĥn(G, A), but the notation Ĥn(G, A) can be helpful to 
highlight symmetry. 

Theorem 23.32. Let G be a finite group. Every short exact sequence of G-modules 

α β 
0 −→ A −→ B −→ C −→ 0. 

induces a long exact sequence of Tate cohomology groups 

αn β̂n δ̂nˆ· · · −→ Ĥn(G, A) −→ Ĥn(G, B) −→ Ĥn(G, C) −→ Ĥn+1(G, A) −→ · · · , 

equivalently, a long exact sequence of Tate homology groups 

ˆ ˆα̂n βn δn· · · −→ Ĥn(G, A) −→ Ĥn(G, B) −→ Ĥn(G, C) −→ Ĥn−1(G, A) −→ · · · . 

Commutative diagrams of short exact sequences of G-modules induce commutative diagrams 
of long exact sequences of Tate cohomology groups (equivalently, Tate homology groups). 

Proof. It follows from Theorems 23.8 and 23.21 that it is enough to prove exactness at the 
terms Ĥ0(G, •) = Ĥ−1(G, •) and Ĥ0(G, •) = Ĥ−1(G, •). We thus consider the diagram 

δ0 α0 β0
H1(C, G) → AG → BG → CG → 0←


← ← ←
 

ˆ ˆ ˆNG NG NG 

→→→
 

0
 ←
 ←←←α0 β0 
δ0 

→ AG → BG → CG → H1(A, G) 
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whose top and bottom rows are the end and beginning of the long exact sequences in 
homology and cohomology given by Theorems 23.21 and 23.8, respectively; here we are 
using H0(G, •) c •G and H0(G, •) c •G . 

For any [a] ∈ AG = A/IGA we have N̂G(α0([a])) = NGα(a) = α(NGa) = α0(N̂G([a])), 
so the first square commutes, as does the second (by the same argument). Applying the 

ˆsnake lemma yields an exact sequence of kernels and cokernels of NG 

ˆ ˆ α0 β̂0α̂0 β0 δ ˆ
Ĥ0(G, A) → Ĥ0(G, B) → Ĥ0(G, C) → Ĥ0(G, A) → Ĥ0(G, B) → Ĥ0(G, C), 

where δ̂([c]) = [a] for any a ∈ A, b ∈ B, c ∈ C with α(a) = NGb and β(b) = c ∈ ker NG 

(that this uniquely defines the connecting homomorphism δ̂ is part of the snake lemma). 
Note that im δ0 = ker α0 = ker α̂0 ⊆ ker N̂G, since α0 is injective, so δ0 gives a well-
defined map δ̂0 : Ĥ1(G, C) → Ĥ0(G, A) that makes the sequence is exact at Ĥ0(G, A). 
Similarly, im N̂G ⊆ im β0 = ker δ0, since β0 is surjective, so δ0 induces a well-defined map 
δ̂0 ˆ ˆH0(G, C) → H1(A, G) that makes the sequence exact at H0(G, C).: 

For the last statement of the theorem, suppose we have the following commutative 
diagram of exact sequences of G-modules 

0 A B

←→ →α β ← ← →C→ ←

0 

←



←



←

 

ϕφ ψ →



→



→

 β ' α ' A/ B/ C /→ → 0 

By Theorems 23.21 and 23.8, we only need to verify the commutativity of the square 

← →
 →
0
 ←
 ←
 ←


Ĥ0(G, C) Ĥ0(G, A) 

Ĥ0(G, C /) Ĥ0(G, A/) 

←→ δ̂ 

←
 

→
 

ϕ0 ←
 

→
 

φ0 

←→ δ̂ ' 

Let a ∈ A, b ∈ B, c ∈ C satisfy α(a) = NGb and β(b) = c ∈ ker NG as in the definition of δ̂
/above, so that δ̂([c]) = [a]. Now let a = φ(a), b/ = ψ(b), c = ϕ(c). Then 

α/(a/) = α/(φ(a)) = ψ(α(a)) = ψ(NGb) = NGψ(b) = NGb
/ 

β/(b/) = β/(ψ(b)) = ϕ(β(b)) = ϕ(c) = c/ ∈ ker NG, 

/where we have used NGc = NGϕ(c) = ϕ(NGc) = ϕ(0) = 0. Thus δ̂/([c/] = [a/] and 

φ0(δ̂([c])) = φ0([a]) = [φ(a)] = [a/] = δ̂/([c/]) = δ̂/([ϕ(c)] = δ̂/(ϕ0([c])), 

ˆso φ0 ◦ δ̂ = δ/ ◦ ϕ0 as desired. 

Theorem 23.32 implies that the family Ĥn(G, •) is a cohomological δ-functor, and that 
ˆthe family Hn(G, •) is a homological δ-functor. 

Corollary 23.33. Let G be a finite group. For any G-modules A and B we have 

Ĥn(G, A ⊕ B) c Ĥn(G, A) ⊕ Ĥn(G, B), 

for all n ∈ Z, and the isomorphisms commute with the natural inclusion and projection 
maps for the direct sums on both sides. 
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Proof. For n = 0, −1 this follows from Corollaries 23.15 and 23.22. For n = 0, −1 it suffices 
ˆto note that NG acts on A ⊕ B component-wise, and the induced morphism NG thus acts 

on (A ⊕ B)G = AG ⊕ BG component-wise. 

Theorem 23.34. Let G be a finite group and let B be an induced or co-induced G-module 
associated to some abelian group A. Then Ĥn(G, B) = Ĥn(G, B) = 0 for all n ∈ Z. 

Proof. By Corollary 23.28, we only need to show Ĥ0(G, B) = Ĥ0(G, B) = 0, and by 
Lemma 23.27 it suffices to consider the case B = IndG(A) = Z[G] ⊗Z A. Equivalently, 
we need to show that NG : B → B has kernel IGB and image BG . By definition, the Z[G]­
action on B = Z[G] ⊗Z A only affects the factor Z[G], so this amounts to showing that, as 
an endomorphism of Z[G], we have ker NG = IG and im NG = Z[G]G . But this is clear: 
the action of NG on Z[G] is g∈G agg  → ( g∈G ag)NG. The kernel of this action is the 
augmentation ideal IG, and its image is Z[G]G = { g∈G agg : all ag ∈ Z equal} = NGZ. 

Remark 23.35. Theorem 23.34 explains a major motivation for using Tate cohomology. 
It is the minimal modification needed to ensure that induced (and co-induced) G-modules 
have trivial homology and cohomology in all degrees. 

Corollary 23.36. Let G be a finite group and let A be a free Z[G]-module. Then Ĥn(G, A) = 
Ĥn(G, A) = 0 for all n ∈ Z. 

Proof. Let S be a Z[G]-basis for A and let B be the free Z-module with basis S. Then 
A c IndG(B) and the corollary follows from Theorem 23.34. 

23.5 Tate cohomology of cyclic groups 

We now assume that G is a cyclic group (g) of finite order. In this case the augmentation 
ideal IG is principal, generated by g − 1 (as an ideal in the ring Z[G], not as a Z-module). 
For any G-module A we have a free resolution 

NG g−1 NG g−1 ε· · · −→ Z[G] −→ Z[G] −→ Z[G] −→ Z[G] −→ Z[G] −→ Z −→ 0. (2) 

The fact that augmentation ideal IG = (g − 1) is principal (because G is cyclic) ensures 
im NG = ker(g − 1), making the sequence exact. 

The group ring Z[G] is commutative, since G is abelian, so we need not distinguish left 
and right Z[G]-modules. For any G-module A we can view Z[G] ⊗Z[G] A as a G-module via 
g(h⊗a) = gh⊗a = h⊗ga and view HomZ[G](Z[G], A) as a G-module via (gϕ)(h) := ϕ(gh).6 

Theorem 23.37. Let G = (g) be a finite cyclic group and let A be a G-module. For all n ∈ Z 
we have Ĥ2n(G, A) c Ĥ2n−1(G, A) c Ĥ0(G, A) and Ĥ2n(G, A) c Ĥ2n−1(G, A) c Ĥ0(G, A). 

Proof. We have canonical G-module isomorphisms HomZ[G](Z[G], A) c A c Z[G] ⊗Z[G] A 
induced by ϕ  → ϕ(1) and a  → 1 ⊗ a, respectively, and these isomorphisms preserve the 
multiplication-by-g endomorphisms (that is, (gϕ)(1) = gϕ(1) and 1 ⊗ ga = g(1 ⊗ a)). Using 
the free resolution in (2), we can thus compute Hn(G, A) using the cochain complex 

g−1 NG g−1 NG0 −→ A −→ A −→ A −→ A −→ A · · · , 
6Note that we must have g1g2ϕ(h) = g1(g2ϕ)(h) = (g2ϕ)(g1h) = ϕ(g2g1h) = g2g1ϕ(h) in order for ϕ to 

be both a Z[G]-module morphism and an element of a Z[G]-module, so this will not work if G is not abelian. 
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← 

→ ← → 

← →← 

→ 

and we can compute Hn(G, A) using the chain complex 

NG g−1 NG g−1 · · · −→ A −→ A −→ A −→ A −→ A −→ 0. 

We now observe that AG = ker(g − 1), so for all n ≥ 1 we have 

H2n(G, A) = H2n−1(G, A) = ker(g − 1)/ im NG = coker N̂G = Ĥ0(G, A), 

so Ĥ2n(G, A) = Ĥ2n−1(G, A) = Ĥ0(G, A) for all n ∈ Z, since Ĥ−2n(G, A) = Ĥ2n−1(G, A) 
ˆ Ĥ2nand H−2n+1 = for all n ≥ 0. 

We also note that im(g − 1) = IGA, so for all n ≥ 1 we have 

H2n(G, A) = H2n−1(G, A) = ker NG/ im(g − 1) = ker N̂G = Ĥ0(G, A), 

so Ĥ2n(G, A) = Ĥ2n−1(G, A) = Ĥ0(G, A) for all n ∈ Z, since Ĥ−2n(G, A) = Ĥ2n−1(G, A) 
Ĥ−2n+1 ˆand = H2n for all n ≥ 0. 

It follows from Theorem 23.37 that when G is a finite cyclic group, all of the Tate 
homology/cohomology groups are determined by Ĥ0(G, A) = ker N̂G = ker NG/ im(g − 1) 

←

and Ĥ0(G, A) = coker N̂G = ker(g − 1)/ im NG. This motivates the following definition. 

Definition 23.38. Let G be a finite cyclic group and let A be a G-module. We define 
hn(A) := hn(G, A) := # Ĥn(G, A) and hn(A) := hn(G, A) := # Ĥn(G, A). Whenever h0(A) 
and h0(A) are both finite, we also define the Herbrand quotient h(A) := h0(A)/h0(A) ∈ Q. 

Remark 23.39. Some authors define the Herbrand quotient via h(A) := h0(A)/h1(A) or 
h(A) := h0(A)/h−1(A) or h(A) := h2(A)/h1(A), but Theorem 23.37 implies that these 
definitions are all the same as ours. The notation q(A) is often used instead of h(A), and 
one occasionally sees the Herbrand quotient defined as the reciprocal of our definition (as 
in [2], for example), but this is less standard. 

Corollary 23.40. Let G be a finite cyclic group. Given an exact sequence of G-modules 

α β 
0 −→ A −→ B −→ C −→ 0 

we have a corresponding exact hexagon 

Ĥ0(G, A) α̂0 
→ Ĥ0(G, B) 

δ̂0 β̂0 

Ĥ0(G, C) Ĥ0(G, C) 

β̂0 δ̂0 

→ˆ ˆH0(G, B) ← H0(G, A)α̂0 

Proof. This follows immediately from Theorems 23.32 and 23.37.
 

Corollary 23.41. Let G be a finite cyclic group. For any exact sequence of G-modules
 

α β 
0 −→ A −→ B −→ C −→ 0, 

if any two of h(A), h(B), h(C) are defined then so is the third and h(B) = h(A)h(C). 
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Proof. Using the exact hexagon given by Corollary 23.40 we can compute the cardinality
 

h0(A) = # Ĥ0(G, A) = #ker α̂0# im α̂0 = # ker α0# ker β0 . 

Applying a similar calculation to Ĥ0(G, C) and Ĥ1(G, B) yields 

h0(A)h0(C)h0(B) = #ker α̂0# ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0. 

Doing the same for Ĥ0(G, B), Ĥ0(G, A), Ĥ0(G, C) yields 

h0(B)h0(A)h0(C) = #ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0# ker α̂0 = h0(A)h0(C)h0(B). 

If any two of h(A), h(B), h(C) are defined then at least four of the groups in the exact 
hexagon are finite, and the remaining two are non-adjacent, but these two must then also 
be finite. In this case we can rearrange the identity above to obtain h(B) = h(A)h(C). 

Corollary 23.42. Let G be a finite cyclic group, and let A and B be G-modules. If h(A) 
and h(B) are defined then so is h(A ⊕ B) = h(A)h(B). 

Proof. Apply Corollary 23.41 to the split exact sequence 0 → A → A ⊕ B → B → 0. 

Lemma 23.43. Let G=(g) be a finite cyclic group. If A is an induced or finite G-module 
then h(A) = 1. 

Proof. If A is an induced G-module then h0(A) = h0(A) = h(A) = 1, by Theorem 23.34. 
If A is finite, then the exact sequence 

g−1 
0 −→ AG −→ A −→ A −→ AG −→ 0 

implies #AG = # ker(g − 1) = # coker(g − 1) = #AG, and therefore 

h0(A) = #ker N̂G = # coker N̂G = h0(A), 

so h(A) = h0(A)/h0(A) = 1. 

Corollary 23.44. Let G be a finite cyclic group and let A be a G-module that is a finitely 
generated abelian group. Then h(A) = h(A/Ator) whenever either is defined. 

Proof. Apply Corollary 23.41 and Lemma 23.43 to 0 → Ator → A → A/Ator → 0. 

Remark 23.45. The hypothesis of Corollary 23.44 actually guarantees that h(A) is defined, 
but we won’t prove this here. 

Corollary 23.46. Let G be a finite cyclic group and let A be a trivial G-module that is a 
finitely generated abelian group. Then h(A) = (#G)r, where r is the rank of A. 

Proof. We have A/Ator c Zr, where Z is a trivial G-module. Then ZG = Z = ZG, and 
N̂G : ZG → ZG is multiplication by #G, so h(Z) = # coker N̂G/# ker N̂G = #G. Now apply 
Corollaries 23.42 and 23.44. 

Lemma 23.47. Let G be a finite cyclic group and let α : A → B be a morphism of G-
modules with finite kernel and cokernel. If either h(A) or h(B) is defined then h(A) = h(B). 
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Proof. Applying Corollary 23.41 to the exact sequences
 

0 → ker α → A → im α → 0 

0 → im α → B → coker α → 0 

yields h(A) = h(ker α)h(im α) = h(im α) = h(im α)h(coker α) = h(B), by Lemma 23.43, 
since ker α and coker α are finite. The lemma follows. 

Corollary 23.48. Let G be a finite cyclic group and let A be a G-module containing a 
sub-G-module B of finite index. Then h(A) = h(B) whenever either is defined. 

Proof. Apply Lemma 23.47 to the inclusion B → A. 

23.6 A little homological algebra 

In an effort to keep these notes self-contained, in this final section we present proofs of 
the homological results that were used above. For the sake of concreteness we restrict 
our attention to modules, but everything in this section generalizes to suitable abelian 
categories. We use R to denote an arbitrary (not necessarily commutative) ring (in previous 
section R was the group ring Z[G]). Statements that use the term R-module without 
qualification are understood to apply in both the category of left R-modules and the category 
of right R-modules. 

23.6.1 Complexes 

Definition 23.49. A chain complex C is a sequence of R-module morphisms 

d2 d1 d0· · · −→ C2 −→ C1 −→ C0 −→ 0, 

with dn ◦dn+1 = 0; the dn are boundary maps. The nth homology group of C is the R-module 
Hn(C) := Zn(C)/Bn(C), where Zn(C) := ker dn−1 and Bn(C) := im dn are the R-modules 
of cycles and boundaries, respectively; for n < 0 we define Cn = 0 and dn is the zero map. 

A morphism of chain complexes f : C → D is a sequence of R-module morphisms 
fn : Cn → Dn that commute with boundary maps (so fn ◦dn = dn ◦fn+1).

7 Such a morphism 
necessarily maps cycles to cycles and boundaries to boundaries, yielding natural morphisms 
Hn(f) : Hn(C) → Hn(D) of homology groups.8 We thus have a family of functors Hn(•) 
from the category of chain complexes to the category of abelian groups. The category of 
chain complexes has kernels and cokernels (and thus exact sequences). The set Hom(C, D) of 
morphisms of chain complexes C → D is an abelian group under addition: (f +g)n = fn+gn. 

The category of chain complexes of R-modules contains direct sums and direct products: 
if A and B are chain complexes of R-modules then (A ⊕ B)n := An ⊕ Bn and the boundary 
maps dn : (A ⊕ B)n+1 → (A ⊕ B)n are defined component-wise: dn(a ⊕ b) := dn(a) ⊕ dn(b). 
Because the boundary maps are defined component-wise, the kernel of the boundary map of 

7We use the symbols dn to denote boundary maps of both C and D; in general, the domain and codomain 
of any boundary or coboundary map should be inferred from context. 

8In fact Hn(f) : Hn(C) → Hn(D) is a morphism of R-modules, but in all the cases of interest to us, either 
the homology groups are all trivial (as occurs for exact chain complexes, such as the standard resolution of 
Z by Z[G]-modules), or R = Z (as in the chain complexes used to define the Ext and Tor groups below), so 
we will generally refer to homology groups rather than homology modules. 
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a direct sum is the direct sum of the kernels of the boundary maps on the components, and 
similarly for images. It follows that Hn(A ⊕ B) c Hn(A) ⊕ Hn(B), and this isomorphism 
commutes with the natural inclusion and projection maps in to and out of the direct sums 
on both sides. In other words, Hn(•) is an additive functor (see Definition 23.16). This 
extends to arbitrary (possibly infinite) direct sums, and also to arbitrary direct products, 
although we will only be concerned with finite direct sums/products.9 

Theorem 23.50. Associated to each short exact sequence of chain complexes 

α β 
0 −→ A −→ B −→ C −→ 0 

is a long exact sequence of homology groups 

Hn+1(α) Hn+1(β) δn Hn(α) Hn(β) · · · −→ Hn+1(A) −→ Hn+1(B) −→ Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ · · · 

and this association maps morphisms of short exact sequences to morphisms of long exact 
sequences. In other words, the family of functors Hn(•) is a homological δ-functor. 

For n < 0 we have Hn(•) = 0, by definition, so this sequence ends at H0(C) → 0. 

Proof. For any chain complex C, let Yn(C) := Cn/Bn(C). Applying the snake lemma to 

αn+1 βn+1
Yn+1(A) Yn+1(B) Yn+1(C) 0 

0 Zn(A) Zn(B) Zn(C) 

←→ 

←
 

→
 

dn 

←→ 

←
 

→
 

dn 

←→ 

←
 

→
 

dn 

←→ ← →αn ← → 
βn 

(where αn, βn, dn denote obviously induced maps) yields the exact sequence 

αn+1 βn+1 δn αn βn
Hn+1(A) −→ Hn+1(B) −→ Hn+1(C) −→ Hn(A) −→ Hn(B) −→ Hn(G). 

The verification of the commutativity of diagrams of long exact sequences of homology 
groups associated to commutative diagrams of short exact sequences of chain complexes is 
as in the proof of Theorem 23.8, mutatis mutandi. 

Definition 23.51. Two morphisms f, g : C → D of chain complexes are homotopic if there 
exist morphisms hn : Cn → Dn+1 such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0 
(where h−1 := 0); this defines an equivalence relation f ∼ g, since (a) f ∼ f (take h = 0), 
(b) if f ∼ g via h then g ∼ f via −h, and (c) if f1 ∼ f2 via h1 and f2 ∼ f3 via h2 then 
f1 ∼ f3 via h1 + h2. 

Lemma 23.52. Homotopic morphisms of chain complexes f, g : C → D induce they some 
morphisms of homology groups Hn(C) → Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0. 

Proof. Let [z] ∈ Hn(C) = Zn(C)/Bn(C) denote the homology class z ∈ Zn(C). We have 

fn(z) − gn(z) = dn(hn(z)) + hn−1(dn−1(z)) = dn(hn(z)) + 0 ∈ Bn(D), 

thus Hn(f)([z]) − Hn(g)([z]) = 0. It follows that Hn(f) = Hn(g) for all n ≥ 0. 
9This does not imply that the Ext and Tor functors defined below commute with arbitrary direct sums 

and direct products; see Remarks 23.62 and 23.66. 
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← 

Definition 23.53. A cochain complex C is a sequence of R-module morphisms
 

d0 d1 d2 

0 −→ C0 −→ C1 −→ C2 −→ · · · 

with dn+1◦dn = 0. The nth cohomology group of C is the R-module Hn(C) :=Zn(C)/Bn(C), 
where Zn(C) := ker dn and Bn(C) := im dn−1 are the R-modules of cocycles and cobound­
aries;; for n < 0 we define Cn = 0 and dn is the zero map. A morphism of cochain 
complexes f : C → D consists of R-module morphisms fn : Cn → Dn that commute with 
coboundary maps, yielding natural morphisms Hn(f) : Hn(C) → Hn(D) and a functors 
Hn(•) from the category of cochain complexes to the category of abelian groups. Cochain 
complexes form a category with kernels and cokernels, as well as direct sums and direct 
products (coboundary maps are defined component-wise). Like Hn(•), the functor Hn(•) 
is additive and commutes with arbitrary direct sums and direct products. 

The set Hom(C, D) of morphisms of cochain complexes C → D forms an abelian group 
nunder addition: (f + g)n = fn + g . Morphisms of cochain complexes f, g : C → D are 

n +dn−1 ◦hn−1homotopic if there are morphisms hn : Cn+1 → Dn such that fn −g = hn ◦dn 

10for all n ≥ 0 (where h−1 := 0); this defines an equivalence relation f ∼ g. 

Theorem 23.54. Associated to every short exact sequence of cochain complexes 

α β 
0 −→ A −→ B −→ C −→ 0 

is a long exact sequence of homology groups 

Hn+1 Hn+1Hn Hn
δn(α) (β) (α) 

Hn+1(B) 
(β) · · · −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ Hn+1(A) −→ −→ Hn+1(C) −→ · · · 

and this association maps morphisms of short exact sequences ot morphisms of long exact 
sequences, that is, the family of functors Hn(•) is a cohomological δ-functor. 

For n < 0 we have Hn(•) = 0, by definition, so this sequence begins with 0 → H0(A). 

Proof. Adapt the proof of Theorem 23.50. 

Lemma 23.55. Homotopic morphisms of cochain complexes f, g : C → D induce they same 
morphisms of cohomology groups Hn(C) → Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0. 

Proof. Adapt the proof of Lemma 23.52. 

23.6.2 Projective resolutions 

Recall that a projective R-module is an R-module P with the property that if π : M - N is a 
surjective morphism of R-modules, every R-module morphism ϕ : P → N factors through π: 

P 

←

 

→ ∃φ 
ϕ →


 π -M
 N
←


Free modules are projective, since we can then fix an R-basis {ei} for P and define φ(ei) by 
picking any element of π−1(ϕ(ei)) (note that the φ so constructed is in no way canonical). 

10Note the the order of composition in the homotopy relations for morphisms of chain/cochain complexes. 
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Definition 23.56. Let M be an R-module. A projective resolution of M is an exact chain 
complex P with P0 = M and Pn projective for all n > 0. 

Every R-module has a projective resolution, since (as noted earlier), every R-module M 
has a free resolution (we can always construct d0 : P1 -M by taking P1 to be free module 
with basis M , then similarly construct d1 : P2 - ker d0, and so on). 

Proposition 23.57. Let M and N be R-modules with projective resolutions P and Q, 
respectively. Every R-module morphism α0 : M → N extends to a morphism α : P → Q of 
chain complexes that is unique up to homotopy. 

Proof. We inductively construct αn for n ≥ 1 (the base case is given). Suppose we have 
constructed a commutative diagram of exact sequences 

dn+1 dn dn−1 dn−2→ Pn+1 → Pn → Pn−1 → P1 

←←←←←←← d1 d0 

→→→
 

←
 → 

→
 

α0α1αn αn−1 ··· 
dn+1 dn dn−1 dn−2 d1 d0

←
 

→ → → → · · · → → N → 

→
 

←
 

→
 

← ← ←
 

←←←

→
 →
M
 0
· · ·
 · · ·
 

Qn+1 Qn Pn−1 Q1 0
 

Then dn−1 ◦ αn ◦ dn = αn−1 ◦ dn−1 ◦ dn = 0, so im(αn ◦ dn) ⊆ ker dn−1 = im dn. We now 
define αn+1 : Pn+1 → Qn+1 as a pullback of the morphism αn ◦ dn : Pn+1 → im dn along the 
surjection dn : Qn+1 → im dn such that dn ◦ αn+1 = αn ◦ dn. 

Now suppose β : P → Q is another morphism of projective resolutions with β0 = α0, 
and let γ = α − β. To show that α and β are homotopic it suffices to construct maps 
hn : Pn → Qn+1 such that dn ◦ hn = γn − hn−1 ◦ dn−1 (where h−1 = d−1 = 0). We have 
γ0 = α0 − β0 = 0, so let h0 := 0 and inductively assume dn ◦ hn = γn − hn−1 ◦ dn−1. Then 

dn ◦ (γn+1 − hn ◦ dn) = dn ◦ γn+1 − (dn ◦ hn) ◦ dn = γn ◦ dn − (γn − hn−1 ◦ dn−1) ◦ dn = 0, 

so im(γn+1 − hn ◦ dn) ⊆ Bn+1(Q). The R-module Pn+1 is projective, so we can pullback the 
morphism (γn+1 − hn ◦ dn) : Pn+1 → Bn+1(Q) along the surjection dn+1 : Qn+1 → Bn+1(Q) 
to obtain hn+1 satisfying dn+1 ◦ hn+1 = γn+1 − hn ◦ dn as desired. 

←
23.6.3 Hom and Tensor 

If M and N are R-modules, the set HomR(M, N) of R-module morphisms M → N forms 
an abelian group under pointwise addition (so (f + g)(m) := f(m) + g(m)) that we may 
view as a Z-module. For each R-module A we have a contravariant functor HomR(•, A) 
that sends each R-module M to the Z-module 

M ∗ := HomR(M, A) 

and each R-module morphism ϕ : M → N to the Z-module morphism 

ϕ ∗ : HomR(N, A) → HomR(M, A) 

f  → f ◦ ϕ. 

To check this, note that 

ϕ ∗ (f + g) = (f + g) ◦ ϕ = f ◦ ϕ + g ◦ ϕ = ϕ ∗ (f) + ϕ ∗ (g), 

←
 ←
 ←
· · ·
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so ϕ∗ is a morphism of Z=modules (homomorphism of abelian groups), and 

id ∗ 
M = (f  → f ◦ idM ) = (f  → f) = idM∗ , 

(φ ◦ ϕ) ∗ = (f  → f ◦ φ ◦ ϕ) = (f  → f ◦ ϕ) ◦ (f  → f ◦ φ) = ϕ ∗ ◦ φ ∗ , 

thus HomR(•, A) is a contravariant functor. 

Lemma 23.58. Let ϕ : M → N and φ : N → P be morphisms of R-modules. The sequence 

ϕ φ 
M −→ N −→ P −→ 0 

is exact if and only if for every R-module A the sequence 

φ∗ ϕ∗ 

0 −→ HomR(P, A) −→ HomR(N, A) −→ HomR(M, A) 

is exact. 

Proof. (⇒): If φ∗(f) = f ◦ φ = 0 then f = 0, since φ is surjective, so φ∗ is injective. 
∼

We have ϕ∗ ◦ φ∗ = (ϕ ◦ φ)∗ = 0∗ = 0, so im φ∗ ⊆ ker ϕ∗ . Let φ−1 : P → N/ ker φ. Each 
g ∈ ker ϕ∗ vanishes on im ϕ = ker φ inducing ḡ : N/ ker φ → A with g = ḡ ◦ φ−1 ◦ φ ∈ im φ∗ . 

(⇐): For A = P/ im φ and π : P → P/ im φ the projective map, we have φ∗(π) = 0 
and therefore π = 0, since φ∗ is injective, so P = im φ and φ is surjective. For A = P 
we have 0 = (ϕ∗ ◦ φ∗)(idP ) = idP ◦φ ◦ ϕ = φ ◦ ϕ, so im ϕ ⊆ ker φ. For A = N/ im ϕ, and 
π : N → N/ im ϕ the projection map, we have π ∈ ker ϕ∗ = im φ∗, thus π = φ∗(σ) = σ ◦ φ 
for some σ ∈ Hom(P, A). Now π(ker φ) = σ(φ(ker φ)) = 0 implies ker φ ⊆ ker π = im ϕ. 

f g
Definition 23.59. A sequence of morphisms 0 → A → B → C → 0 is left exact if it is 
exact at A and B (ker f = 0 and im f = ker g), and right exact if it is exact at B and C 
(im f = ker g and im g = C). A functor that takes exact sequences to left (resp. right) 
exact sequences is said to be left exact (resp. right exact). 

Corollary 23.60. For any R-module A the functor HomR(•, A) is left exact. 

Proof. This follows immediately from the forward implication in Lemma 23.58. 

Corollary 23.61. For any R-module A, the functor HomR(•, A) is an additive functor. 

Proof. See [6, Lemma 12.7.2] for a proof that this follows from left exactness; it is easy to 
check directly in any case. 

Remark 23.62. Corollary 23.61 implies that HomR(•, A) commutes with finite direct sums, 
but it does not commute with infinite direct sums (direct products are fine). 

Remark 23.63. The covariant functor HomR(A, •) that sends ϕ : M → N to (f  → ϕ ◦ f) 
is also left exact. 

If M is a right R-module and A is a left R-module, the tensor product M ⊗R A is an 
abelian group consisting of sums of pure tensors m ⊗ a with m ∈ M and a ∈ A satisfying: 

• m ⊗ (a + b) = m ⊗ b + m ⊗ b; 

• (m + n) ⊗ a = m ⊗ a + m ⊗ a; 

• mr ⊗ a = m ⊗ ra. 
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For each left R-module A we have a covariant functor • ⊗R A that sends each right R-
module M to the Z-module 

M∗ := M ⊗R A, 

and each right R-module morphism ϕ : M → N to the Z-module morphism 

ϕ∗ : M ⊗R A → N ⊗R A 

m ⊗ a  → ϕ(m) ⊗ a 

For each left R-module A we also have a covariant functor HomZ(A, •) that sends each 
Z-module B to the right R-module HomZ(A, B) with ϕ(a)r := ϕ(ra) and each Z-module 
morphism ϕ : B → C to the right R-module morphism Hom(A, B) → Hom(A, C) defined 
by f  → ϕ ◦ f . Note that (ϕrs)(a) = ϕ(rsa) = (ϕr)(sa) = ((ϕr)s)(a), so HomZ(A, B) is 
indeed a right R-module. 

For any abelian group B there is a natural isomorphism of Z-modules 

∼
HomZ(M ⊗R A, B) −→ HomR(M, HomZ(A, B)) (3) 

ϕ  → (m  → (a  → ϕ(m ⊗ a))) 

(m ⊗ a  → φ(m)(a) ← φ 

The functors • ⊗R A and HomZ(A, •) are thus adjoint functors. One can view (3) as a 
universal property that determines M ⊗R A up to a unique isomorphism. 

Lemma 23.64. For any left R-module the functor • ⊗R A is right exact. 

Proof. Let 
ϕ φ 

0 −→ M −→ N −→ P −→ 0, 

be an exact sequence of right R-modules. For any i pi ⊗ ai ∈ P∗ we can pick ni ∈ N 
such that φ(ni) = pi and then φ( i ni ⊗ a) = i pi ⊗ a, thus φ∗ is surjective. For any 

i mi ⊗ ai ∈ M ⊗R A we have φ∗(ϕ∗( i mi ⊗ ai)) = i φ(ϕ(mi)) ⊗ ai = 0 ⊗ ai = 0, so i 
im ϕ∗ ⊆ ker φ∗. To prove im ϕ∗ = ker φ∗ it suffices to show that N∗/ im ϕ∗ c P∗, since the 
surjectivity of φ∗ implies N∗/ ker ϕ∗ c P∗. For every abelian group B the sequence 

φ∗ φ∗ 

0 −→ HomR(P, HomZ(A, B)) −→ HomR(N, HomZ(A, B)) −→ HomR(M, HomZ(A, B)) 

is left exact (by applying Corollary 23.60 to the right R-module HomZ(A, B); note that the 
corollary applies to both left and right R-modules). Equivalently, by (3), 

φ∗ ϕ∗ 
∗ ∗ 0 −→ HomZ(P∗, B) −→ HomZ(N∗, B) −→ HomZ(M∗, B), 

Applying Lemma 23.58 and the surjectivity of φ∗ yields the desired right exact sequence 

ϕ∗ φ 
M∗ −→ N∗ −→ P∗ −→ 0. 

Corollary 23.65. For any left R-module A, the functor • ⊗R A is an additive functor. 

Proof. See [6, Lemma 12.7.2] for a proof that this follows from right exactness; it is easy to 
check directly in any case. 

Remark 23.66. Corollary 23.65 implies that • ⊗R A commutes with finite direct sums, 
and in fact it commutes with arbitrary direct sums (but not direct products). 
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Remark 23.67. For any right R-module A the functor A ⊗R • is also right exact. 

If A is an R-module and C is a	 chain complex of R-modules, applying the functor 
Hom(•, A) to the R-modules Cn	 and boundary maps dn : Cn+1 → Cn yields a cochain 

C∗ d∗ 11complex C∗ of Z-modules Cn := and coboundary maps dn := , and morphisms n	 n

f : C → D of chain complexes become morphisms f∗ : C∗ → D∗ of cochain complexes. We 
thus also have a contravariant left exact functor from the category of chain complexes to 
the category of cochain complexes. 

Proposition 23.68. Let A be an R-module and let •∗ denote the application of the functor 
Hom(•, A). Let f, g : C → D be homotopic morphisms of chain complexes of R-modules. 

∗Then f∗ , g : D∗ → C∗ are homotopic morphisms of cochain complexes of Z-modules. 

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1 

such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the contravariant functor 
Hom(•, A) yields 

∗ f ∗ − g = h ∗ ◦ d ∗ + d ∗ 
n−1 ◦ h ∗ 

n n n n n−1, 

∗where h∗ : Dn+1 → Cn for all n ≥ 0, with h−1 = 0. Thus f∗ and g are homotopic. n 

Proposition 23.69. Let A be a left R-module and let •∗ denote the application of the 
functor • ⊗R A. Let f, g : C → D be homotopic morphisms of chain complexes of right R-
modules. Then f∗, g∗ : C∗ → D∗ are homotopic morphisms of chain complexes of Z-modules. 

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1 

such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the covariant functor 
• ⊗R A yields 

fn∗ − gn∗ = dn∗ ◦ hn∗ + hn−1∗ ◦ dn−1∗, 

where hn∗ : Cn+1 → Dn for all n ≥ 0, with h−1 = 0. Thus f∗ and g∗ are homotopic. 

23.6.4 Ext and Tor functors 

Definition 23.70. Let P be a projective resolution of an R-module M . The truncation 
of P is the chain complex P with P 0 := P1 and P n := Pn+1 for all n > 0 (which need not 
be exact at P 0).12 Any morphism of projective resolutions f : P → Q induces a morphism 
¯	 ¯f : P → Q of their truncations with fn := fn+1. 

Theorem 23.71. Let P , Q be projective resolutions of an R-module M , let A be an R­
∗ ∗ 

module, and let •∗ denote application of HomR(•, A). Then Hn(P A) c Hn(QA) for n ≥ 0.A 

Proof. We will drop the subscript A in the proof to ease the notation. 
Let f : P → Q and g : Q → P be extensions of the identity morphism idM given by 

Proposition 23.57. The composition g ◦ f : P → P is an extension of idM , as is idP , so g ◦ f 
is homotopic to idP , by Proposition 23.57. We have (g ◦ f)0 = idM = (id P )0, which implies 

¯that g ◦ f = ḡ ◦ f and idP = id are also homotopic (via the same homotopy; note h0 = 0 P 
¯in the proof of Proposition 23.57). Similarly, f ◦ ḡ and idQ are homotopic. 

∗ ∗ ∗ ∗∗¯Applying HomR(•, A) yields homotopic morphisms f∗ : Q → P and ḡ : P → Q , with 
∗f̄∗ ◦ ḡ homotopic to id ∗ = id ∗ and ḡ ∗ ◦ f̄∗ homotopic to id ∗ = id ∗ , by Proposition 23.68.

P P	 Q Q 
∗ ∗∗By Lemma 23.55, f̄∗ and ḡ induce isomorphims Hn(P A) c Hn(QA) for all n ≥ 0. 

11This justifies our indexing the boundary maps dn : Cn+1 → Cn rather than dn : Cn → Cn−1. 
12The intuition is that the truncation of projective resolution of M can serve as a replacement for M . 
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∗ 
Definition 23.72. Let A and M be R-modules. Extn A)R(M, A) is the abelian group Hn(P 
uniquely determined by Theorem 23.71 using any projective resolution P of M . If α : A → B 
is a morphism of R-modules the map ϕ  → α ◦ ϕ induces a morphism of cochain complexes 

∗ ∗ 
P , A → P R(M, α) : Extn R(M, B) for each n ≥ 0.and morphisms Extn R(M, A) → Extn 

B
 

We thus have a family of functors Extn
 
R(M, •) from the category of R-modules to the 

category of abelian groups that is a cohomological δ-functor (by Theorem 23.54). 

Lemma 23.73. Let M be an R-module. The functors ExtR
n (M, •) are additive functors 

and thus commute with finite direct sums and products. 

Proof. This follows from Corollary 23.61 and the fact Hn(•) is an additive functor. 

Lemma 23.74. For any two R-modules M and A we have Ext0 
R(M, A) c HomR(M, A). 

Proof. Let · · · → P2 → P1 → M → 0 be a projective resolution of M . Applying HomR(•, A) 
yields an exact sequence 0 → M∗ → P ∗ → P ∗ → · · · , and we observe that 1 2 

∗ ∗ ∗ 
Ext0 ) = Z0(P )/B0(P ) = ker(P ∗ 

2 )/ im(0 → P1 
∗ ) c M ∗ .R(M, A) = H0(P → P ∗ 

1 

Theorem 23.75. Let P , Q be projective resolutions of a right R-module M . Let A be a left 
A A 

R-module, and let •A denote application of • ⊗R A. Then Hn(P ∗ ) c Hn(Q∗ ) for n ≥ 0.∗ 

Proof. We drop the superscript A in the proof to ease the notation. 
Let f : P → Q and g : Q → P be extensions of the identity morphism idM given by 

¯Proposition 23.57. As in the proof of Theorem 23.71, ḡ ◦ f and id are homotopic, as are P 
f̄ ◦ ḡ and idQ. 

¯Applying • ⊗R A yields homotopic morphisms f∗ : P ∗ → Q∗ and ḡ∗ : Q∗ → P ∗, with 
¯ ¯ ¯f∗ ◦ ḡ∗ homotopic to id and f∗ ◦ ḡ∗ homotopic to id . By Lemma 23.52, f∗ and ḡ∗ induceP ∗ Q∗ 

isomorphisms Hn(P ∗) c Hn(Q∗) for all n ≥ 0. 

Definition 23.76. Let A a left R-module and let M be a right R-module. TorR(M, A)n 
A 

is the abelian group Hn(P ∗ ) uniquely determined by Theorem 23.75 using any projective 
resolution P of M . If α : A → B is a morphism of left R-modules the map x ⊗ a  → x ⊗ ϕ(a) 

A B 
induces a morphism P → P and morphisms TorR(M, α) : TorR(M, A) → ExtR(M, B) for ∗ ∗ n n n 
each n ≥ 0. This yields a family of functors TorR(M, •) from the category of left R-modules n 
to the category of abelian groups that is a homological δ-functor (by Theorem 23.50). 

Lemma 23.77. Let M be a right R-module. The functors TorR(M, •) are additive functors n 
and thus commute with finite direct sums and products.
 

Proof. This follows from Corollary 23.65 and the fact Hn(•) is an additive functor.
 

Lemma 23.78. For any two R-modules M and A we have TorR 
0 (M, A) c M ⊗R A.
 

Proof. Let · · · → P2 → P1 → M → 0 be a projective resolution of M . Applying • ⊗R A
 
yields the exact sequence · · · P2∗ → P1∗ → M∗ → 0, and we observe that 

TorR 
0 (M, A) = H0(P ∗) = Z0(P ∗)/B0(P ∗) = ker(P1∗ → 0)/ im(P2∗ → P1∗) c M∗, 

Remark 23.79. One can also define Extn (M, A) using injective resolu-R(M, A) and TorR 
n 

tions; see [7, §2.7] for a proof that this yields the same results. 
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