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23 Isogeny volcanoes 

We now shift our focus from elliptic curves over C to elliptic curves other fields, and to 
finite fields in particular. As noted in Lecture 21, the moduli interpretation of the modular 
polynomial X0(N) as parameterizing cyclic isogenies of degree N is valid over any field whose 
characteristic does not divide N ; see Theorem 21.4. We can thus use the modular equation 
ΦN ∈ Z[X, Y ] to identify pairs of isogenous elliptic curves using j-invariants in any field k. 
When k is not algebraically closed this determines the elliptic curves involved only up to a 
twist, but for finite fields there are only two twists to consider (assuming j 6= 0, 1728), and 
in many applications it suÿces to work with k̄ isomorphism classes of elliptic curves defined 
over k, equivalently the set of j-invariants of elliptic curves E/k, which by Theorem 14.12, 
is just the set k itself. 

We are particularly interested in the case that N = ` is a prime di˙erent from the 
characteristic of k. Every isogeny of degree ̀  is necessarily cyclic (since ̀  is prime), and for 
any fixed j-invariant j1 := j(E1), the roots of the polynomial 

φ`(Y ) = Φ`(j1, Y ) 

that lie in k are j-invariants of elliptic curves E2/k that are `-isogenous to E, meaning 
that there exists an isogeny ϕ : E1 → E2 of degree ̀ . More precisely, there is a bijection 
between the roots of φ`(Y ) in k and the cyclic subgroups of E[`] that are fixed Gal(k̄/k) 

¯when the roots of φ`(Y ) are counted with multiplicity; over k there are deg φ` = ` + 1 (not 
necessarily distinct) roots of φ` corresponding to ̀  +1 (necessarily distinct) cyclic subgroups 
of E[`] ' Z/`Z ⊕ Z/` of order ̀ . Recall from Theorem 6.10 that every finite subgroup of 
E(k̄) is the kernel of a separable isogeny that is uniquely determined up to composition with 
isomorphisms. We are only interested in isogenies up to isomorphism, so we will consider 
separable isogenies to be distinct if and only if their kernels di˙er. We will also assume 
` 6= char(k) throughout, so all the isogenies we will consider in this lecture are separable. 

Definition 23.1. The ̀ -isogeny graph G`(k) is the directed graph with vertex set k and 
edges (j1, j2) present with multiplicity equal to the multiplicity of j2 as a root of Φ`(j1, Y ). 

As noted in Remark 21.6, if j1 = j(E1) and j2 = j(E2) are the j-invariants of a pair of 
`-isogenous elliptic curves, the ordered pair (j1, j2) does not uniquely determine an ̀ -isogeny 
ϕ : E1 → E2; their may be multiple inequivalent ̀ -isogenies from E1 to E2. This is why it 
is important to count edges in G`(k) with multiplicity. The existence of the dual isogeny 
guarantees that (j1, j2) is an edge in G`(k) if and only (j2, j1) is also an edge; provided that 
j1, j2 6= 0, 1728 these edges have the same multiplicity. 

Remark 23.2. The exceptions for j-invariants 0 = j(ρ) and 1728 = j(i) arise from the fact 
2 3 2 3that the corresponding elliptic curves y = x + B and y = x + Ax have automorphisms 

ρ : (x, y) 7→ (ρx, y) and i : (x, y) 7→ (−x, iy), respectively, where ρ and i denote elements 
of orders 3 and 4 in End(E) and k̄. The automorphism −1 does not pose a problem 
because it fixes every cyclic subgroup of E[`], so for any ̀ -isogeny ϕ : E1 → E2 the isogeny 
ϕ ◦ [−1] = [−1] ◦ ϕ has the same kernel as ϕ; this does not apply to ρ and i, which fix only 
two cyclic subgroups of E[`]. If j(E1) = 0 and j(E2) = 0 6 then we cannot write ϕ ◦ ρ = ρ ◦ ϕ 
and the isogenies ϕ, ϕ ◦ ρ, ϕ ◦ ρ2 will all have di˙erent kernels, but the corresponding dual-
isogenies will all have the same kernel. In this situation the edge (j(E1), j(E2) will have 
multiplicity 3 in G`(k) but the edge (j(E2), j(E1)) will have multiplicity 1. The case where 
j(E1) = 1728 and j(E2) 6= 1728 is similar, except now (j(E1), j(E2) has multiplicity 2. 
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Our objective in this lecture is to elucidate the structure of the graph G`(k) in the case 
that k = Fq is a finite field. Recall from Lecture 14 that elliptic curves over finite fields 
may be classified according to their endomorphism algebras and are either ordinary (meaning 
End0(E) is an imaginary quadratic field) or supersingular (meaning End0(E) is a quaternion 
algebra). Whether E is ordinary or supersingular is an isogeny invariant (by Theorem 14.1), 
so the graph G`(Fq) can always be partitioned into ordinary and supersingular components. 
Since most elliptic curves are ordinary, we will focus on the ordinary components; you will 
have an opportunity to investigate the supersingular components on Problem Set 12. 

23.1 Isogenies between elliptic curves with complex multiplication 

Theorem 23.3. Let ϕ : E → E0 be an ̀ -isogeny of elliptic curves defined over a field k. 
Then End0(E0) ' End0(E), and if End0(E) = K is an imaginary quadratic field then 
End(E) = O and End(E0) = O0 are orders in K such that one of the following holds: 

(i) O = O0 , (ii) [O : O0] = `, (iii) [O0 : O] = `. 

Proof. Let ϕ̂ : E0 → E be the dual isogeny. If φ ∈ End(E), the isogeny ϕ ◦ φ ◦ ϕ̂ : E0 → E0 

is an endomorphism φ0 ∈ End(E0) with 

Tφ0 = φ + φ0 = ϕ ◦ φ ◦ ϕ̂+ ϕ ◦ φ̂ ◦ ϕ̂ = ϕ ◦ [Tφ] ◦ ϕ̂ = ϕ ◦ ϕ̂ ◦ [Tφ] = ` Tφ, 

Nφ0 = φ ◦ φ0 = ϕ ◦ φ ◦ ϕ̂ ◦ ϕ ◦ φ̂ ◦ ϕ̂ = ϕ ◦ φ ◦ [`] ◦ φ̂ ◦ ϕ̂ = ϕ ◦ [` Nφ] ◦ ϕ̂ = `2Nφ, 

and φ0 is a root of x2 − (Tφ0)x + Nφ0 = x2 − (Tφ)(`x) + `2Nφ = 0. Thus φ0/` ∈ End0(E0) 
is a root of x2 − (Tφ)x + Nφ, and it follows that the characteristic polynomial of every 
φ ∈ End(E) has a root in End0(E0) and therefore End(E) ⊆ End0(E0). Applying the 
same argument in the reverse direction shows that End(E0) ⊆ End0(E), so we must have 
End0(E0) = End0(E). 

If End0(E0) ' End(E) is an imaginary quadratic field with O = [1, τ ] and O = [1, τ 0], 
then ϕ ◦ τ ◦ ϕ̂ = `τ ∈ O0 and ϕ̂ ◦ τ ◦ ϕ = `τ 0 ∈ O. Thus [1, ̀ τ ] ⊆ [1, τ 0] and [1, ̀ τ 0] ⊆ [1, τ ], 
and therefore 

[1, `2τ ] ⊆ [1, ̀ τ 0] ⊆ [1, τ ]. 

The index of [1, `2τ ] in [t, τ ] is ̀ 2, so the index of [1, ̀ τ 0] in [1, τ ] must be 1, `, or ̀ 2. These 
correspond to cases (iii), (i), and (ii) of the theorem, respectively. 

Definition 23.4. Theorem 23.3 allows us to distinguish ̀ -isogenies ϕ : E → E0 of elliptic 
curves with CM by an imaginary quadratic field as follows: 

(i) when O = O0 we say that ϕ is horizontal, 

(ii) when [O : O0] = ` we say that ϕ is descending, 

(iii) when [O0 : O] = ` we say that ϕ is ascending. 

We collectively refer to ascending and descending isogenies as vertical isogenies. 

Theorem 23.5. Let E/C be an elliptic curve with CM by an order O of discriminant D 
in an imaginary quadratic field K, and let ` be prime. If ` - [OK : O] then E admitsa � a �

D D1 − horizontal, ̀  + descending, and no ascending ̀ -isogenies. Otherwise E admits
` ` 

no ascending, ̀  descending, and one ascending ̀ -isogenies. 
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Proof. We first consider the special case in which E corresponds to a torus C/L with L := `O 
homothetic to O. As explained in Lecture 18 (see §18.5), every ̀ -isogeny ϕ : E → E0 arises 
from a lattice inclusion L ⊆ L0 of index ̀ . The lattices L0 containing L = `O with index ̀  are 
precisely the index-` sublattices of O. By Lemma 21.2, these are the lattices Li := [`, τ + i] 
for 0 ≤ i < ` and the lattice L` := [1, ̀ τ ]. We then have 

O0 := End(E0) ' End(C/L0) = O(L0) := {α ∈ O : αL0 ⊆ L0}, 

so it suÿces to compute O(L0) for the lattices L0 ∈ {L0, L1, . . . , L`}. By definition, we have 
O(L0) = a O� precisely when L0 is a proper O-ideal. By Corollary 22.7,if ̀  - [OK : O] there 

Dare 1 − , each corresponding to a horizontal ̀ -isogeny, and otherwise there are no proper 
` 

O-ideals of norm ̀  and no horizontal ̀ -isogenies. a �
DIf ̀  - [OK :O] we cannot have [O0 :O] = `, in which case we must have 1− horizontal, a `�

Dno ascending, and ̀  + descending ̀ -isogenies. Otherwise O is an index-` suborder of 
` 

some order O00 := [1, ω] in OK , where τ = `ω and ω2 −aω +b = 0, with a = Tω, b = Nω ∈ Z. 
O00 O00By Theorem 23.3, either O0 = and ϕ is an ascending isogeny, or O0 6 and ϕ is a = 

descending isogeny (since ϕ cannot be horizontal). The lattice L0 = [`, τ ] is fixed by O00 , 
since ω` = τ ∈ L0 and ωτ = `ω2 = `(aω − b) = aτ − b` ∈ L0. On the other hand, none of 
the lattices Li with 0 < i < ` are fixed by O00, since ω(τ + i) = `ω2 + iω = (`a + i)ω − b` is 
not an element of O ⊇ Li for 0 < i < `, and L` = [1, ̀ τ ] is not fixed by O00 because ω · 1 = ω 
is not an element of O. It follows that ϕ is an ascending ̀ -isogeny if and only if L0 = L0, so 
there are one ascending and ̀  descending ̀ -isogenies. 

We now consider the general case, in which L is homothetic to a proper O-ideal a, 
which we can assume has prime norm p 6 `= (by Theorem 21.11, every ideal class in cl(O) 
contains infinitely ideals of prime norm). The CM action of a is then a horizontal p-isogeny 
ϕa : E → E0, with E0 ' C/O. Let ϕ : E → E0 be an ̀ -isogeny, let O0 = End(E0), and let 
0a be the O0-ideal a, aO0, or a ∩ O0, depending on whether ϕ is horizontal, descending, or 

ascending. We must have [O0 : a0] = [OK : a0OK ] = [OK : a] = [O : a] = p, since p does 
0divide [OK : O] or [OK : O0] because a is proper and p 6= `; it follows that a is a proper 

O0-ideal of norm p, and we have a horizontal p-isogeny ϕa0 : E0 → E0 with E0 ' C/O0. Up 0 0 
to isomorphism, there is a unique ̀ -isogeny ϕ0 : E0 → E0 such that the diagram 0 

ϕa →E 

←

← E0 

← ←
 

ϕ ϕ0 →
 

E0 

→

ϕ 0a E0 0→ 

commutes, namely the isogeny with kernel ϕa(ker(ϕa0 ◦ ϕ)) given by Theorem 6.10. Since 
ϕa and ϕa0 are both horizontal, the `-isogeny ϕ0 must be of the same type (horizontal, 
descending, or ascending) as ϕ. The theorem then follows from the special case proved 
above. 

Theorem 23.5 extends to any field whose characteristic is not ̀  (provided that one takes 
into rationality into account: `-isogenies admitted by E over k̄ need not be defined over k). 
We won’t prove this in full generality, but we can use Deuring’s lifting theorem to address 
the case where k is a finite field Fq. 

For an imaginary quadratic order O with discriminant D and any field k we define 

EllO(k) := {j(E) ∈ k : End(E) = O}, 
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the set of j-invariants of elliptic curves over k with CM by O; for k = C this is the same as 
the set of roots of the Hilbert class polynomial HD(X), whose cardinality is the class number 
h(D) := #Cl(O), and a result of Deuring noted in the previous lecture (see Theorem 22.12 
yields a similar statement for finite fields. 

Lemma 23.6. Let O be an imaginary quadratic order of discriminant D and let Fq be a 
finite field with q ⊥ D. The set EllO(Fq) is either empty or has cardinality h(D). If EllO(Fq) 
is nonempty, so is Ell0 ) for every imaginary quadratic order O0 containing O.O(Fq

Proof. If EllO(Fq) is nonempty then there is an elliptic curve E/Fq with CM by O. Its 
Frobenius endomorphism πE is an element of End(E) = O with trace t = tr πE and norm q, 
and we must have t ⊥ q, since E is ordinary, by Corollary 14.19. The discriminant of the 
characteristic polynomial x 6 √ 

q),2 −tx+q has a root πE ∈ O that is not in Z (because t = ±2 
so its discriminant t2 − 4q is a square in O − Z, hence of the form v2D for some v ∈ Z. 
We then have 4q = t2 − v2D with t ⊥ q, so p - D, and it follows from Theorem 22.5 and 
Remark 22.11 that q is the norm of a prime ideal in OL, where L is the ring class field of O. 
By Theorem 22.12, the Hilbert class polynomial HD(X) of degree h(D) splits into distinct 
linear factors in Fq[X] and its roots form the set EllO(Fq) of cardinality h(D). 

If O0 is an order of discriminant D0 that contains O with index u, then D = u2D0 and 
24q = t2 − u v2D0, so q is also the norm of a prime ideal in OL0 , where L0 is the ring class 

field of O0, and we have q ⊥ O0, since D0|D. This implies that EllO0 (Fq) is nonempty and 
has cardinality h(D0), by the same argument used above for O. 

Corollary 23.7. Let E/Fq be an elliptic curve with CM by an order O of discriminant D ⊥ qa �
Din an imaginary quadratic field K, and let ̀  - q be prime. Then E admits 1 − horizontal
` 

`-isogenies and one or zero ascending `-isogenies, depending on whether ` - [OK : O] or a �
Dnot. The number of descending ̀ -isogenies admitted by E over Fq is either zero or ̀  + ,
` 

depending on whether EllO0 (Fq) is empty or not, where O0 is the order of index ̀  in O. 

Proof. This follows from Theorem 23.5, Lemma 23.6, and the Deuring lifting theorem (see 
Theorem 22.13). If ϕ : E → E0 is an ̀ -isogeny of CM elliptic curves over C with End(E) = O 
and End(E0) = O0 and Fq is a finite field for which the sets EllO(Fq) and EllO0 (Fq) are both 
nonempty, then we can view ϕ : E → E0 as an isogeny of elliptic curves L, where L the 
larger of the two ring class fields for O and O0 (one must contain the other since either 
O ⊆ O0 or O0 ⊆ O), and q the norm of a prime ideal q in OL. We can use the reduction 
map OL → OL/q = Fq to reduce integral equations for E, E0, and ϕ modulo q to obtain a 

0corresponding ̀ -isogeny ϕ : E → E of elliptic curves over Fq with End(E) = End(E) = O, 
0 

End(E ) = End(E0) = O0, and deg ϕ = deg ϕ = ` (the degree of ϕ cannot change because 
` - q, so E[`] ' E[`], which implies ker ϕ ' ker ϕ, and ϕ must be separable). 

0 0Conversely, if ϕ : E → E is an ̀ -isogeny of elliptic curves over Fq, we can lift E and E 
0to elliptic curves over L with End(E) = End(E) = O and End(E0) = End(E ) = O0. There 

is then a corresponding ̀ -isogeny ϕ : E → E0 whose kernel reduces to the kernel of ϕ (as 
above, the reduction map gives a bijection E[`] ' E[`] for ̀  - q). 

If E/Fq is an elliptic curve with CM by an imaginary quadratic order O and a is a proper 
O-ideal, then as in Definition 18.12 we have an a-torsion subgroup 

E[a] := {P ∈ E(Fq) : α(P ) = 0 for all α ∈ a}. 
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Provided the norm of a is prime to q, there is a corresponding separable isogeny ϕa : E → E0 

with ker ϕa = E[a] and deg ϕa = Na uniquely determined up to isomorphism, by Theo-
rem 6.10. As in the proof above we can lift the isogeny ϕa : E → E0 to a number field 
L ⊆ C where it corresponds to the CM action of cl(O), which implies that we must have 
End(E0) = End(E) = O; if Na is a prime ̀  this means that ϕa is a horizontal ̀ -isogeny. By 
Theorem 21.11, every ideal class in cl(O) contains infinitely many ideals of prime norm, and 
in particular, an ideal whose norm is prime to q. This allows us to define the CM action 
of cl(O) on the set EllO(Fq) in terms of horizontal ̀ -isogenies for various primes ̀  - q. As 
with the CM action on EllO(C), the action of the inverse of an ideal a is given by the dual 
isogeny ϕ̂a. We thus have the following corollary. 

Corollary 23.8. Let O be an imaginary quadratic order of discriminant D and let Fq be a 
finite field with q ⊥ D. If the set EllO(Fq) is nonempty then it is a cl(O)-torsor in which the 
action of the ideal class of any proper O-ideal of prime norm ̀  - q is given by a horizontal 
`-isogeny, and the inverse of this action is given by the dual isogeny. 

Remark 23.9. As noted above, every ideal class in cl(O) contains infinitely many proper 
O-ideals of prime norm ̀ . This means that if we want to compute the action of a given 
proper O-ideal l1 of prime norm ` 1, we can compute this action using any other proper 
O-ideal l2 of prime norm ̀  2 that lies is in the same ideal class. This has many practical 
applications: when ` 1 is large it allows us to use a much smaller ` 2. Indeed, under the 
Generalized Riemann Hypothesis, we can always find a prime ̀  2 bounded by O(log2 |D|). 

23.2 Isogeny volcanoes 

Having determined the exact number of horizontal, ascending, and descending ̀ -isogenies 
that arise for an ordinary elliptic curve over a finite field, we can now completely determine 
the structure of the ordinary components of G`(Fp). Figure 1 depicts a typical example. 

Figure 1: An ordinary component of G3(Fp). 
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Figure 2 shows the same graph from a di˙erent perspective. With a bit of imagination, 
one can see the profile of a volcano: there is a crater formed by the cycle at the top, and 
the trees handing down from each edge form the sides of the volcano. 

Figure 2: A 3-volcano of depth 2. 

Definition 23.10. An `-volcano V is a connected undirected graph whose vertices are 
partitioned into one or more levels V0, . . . , Vd such that the following hold: 

1. The subgraph on V0 (the surface ) is a regular graph of degree at most 2. 
2. For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1, and this accounts 

for every edge not on the surface. 
3. For i < d, each vertex in Vi has degree ̀  + 1. 

Level Vd is called the floor of the volcano; the floor and surface coincide when d = 0. 

As with G`(k), an ̀ -volcano may have multiple edges and self-loops, but it is an undi-
rected graph. If the surface of an ̀ -volcano has more than two vertices, it must be a simple 
cycle. Two vertices may be connected by 1 or 2 edges, and a single vertex may have 0, 1, 
or 2 self-loops. As an abstract graph, an ̀ -volcano is determined by the integers ̀ , d, |V0|. 

If we ignore components that contain the two exceptional j-invariants 0 and 1728, the 
ordinary components of G`(Fp) are all ̀ -volcanoes. This was proved by David Kohel in his 
Ph.D. thesis [6], although the term “volcano” was coined later by Fouquet and Morain in [3]. 

Theorem 23.11 (Kohel). Let Fq be a finite field, let ` - q be a prime, and let V be an 
ordinary component of G`(Fq) that does not contain the j-invariants 0 or 1728. Then V is 
an ̀ -volcano for which the following hold: 

(i) The vertices in level Vi all have the same endomorphism ring Oi. a � 
(ii) The subgraph on V0 has degree 1 + D0 , where D0 = disc(O0).` a �D0(iii) If ≥ 0, then |V0| is the order of [l] in cl(O0); otherwise |V0| = 1.

` 

(iv) The depth of V is d, where 4q = t2 − `2dv2D0 with ̀  - v, t2 = (tr πE)2, for j(E) ∈ V . 

(v) ` - [OK : O0] and [Oi : Oi+1] = ` for 0 ≤ i < d. 

Proof. Let V be an ordinary component of G`(Fq) that does not contain 0 or 1728. The 
only automorphisms admitted by elliptic curves E with j(E) 6 0, 1728 are ±1 ∈ End(E),= 
thus as explained in Remark 23.2, every edge (j1, j2) in V occurs with the same multiplicity 
as the edge (j2, j1), allowing us to view V as an undirected graph. 
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Since V is an ordinary component, every vertex is the j-invariant of an ordinary elliptic 
curves whose endomorphism ring is an order O in an imaginary quadratic field, by Corol-
lary 14.19. It follows from Theorem 23.3 that the order O arising for elliptic curves with 
j(E) ∈ V all lie in the same quadratic field K and di˙er only in the ̀ -adic valuation ν` of 
the conductor of [OK : O]. By Corollary 23.7, every j(E) ∈ V for which End(E) = O has 
conductor divisible by ̀  admits an ascending ̀ -isogeny, and it follows that we can partition 
V into levels V0, . . . , Vd with j(E) ∈ Vi if and only if v`([OK : O]) = i; the set V is finite so 
d is bounded; this proves (i) and (v), and Corollary 23.7 also implies (ii) and that V is an 
`-volcano as claimed. a �D0If = −1 then V0 has degree 0 and we must have |V0| = 1. Otherwise there exists a 

` 
proper O0-ideal l of norm ̀ , and its ideal class [l] ∈ cl(O) acts on V0 via horizontal ̀ -isogenies, 
by Corollary 23.8. This proves (iii). 

Part (iv) follows from Theorem 22.5 and Remark 22.11. If 4q = t2 − v2`2dD0 with ̀  - v, 
then the sets EllOi (k) must be non-empty for 0 ≤ i ≤ d, but the set EllOd+1 (k) must be 
empty since ̀ d+1 does not divide v. 

Remark 23.12. Theorem 23.11 can be extended to the case where V contains 0 or 1728 
following Remark 23.2. Parts (i)-(v) still hold, the only necessary modification is the claim a �−3that V is an ̀ -volcano. When V contains 0, if V1 is non-empty then it contains 1 (` − )3 ` 
vertices, and each vertex in V1 has three incoming edges from 0 but only one outgoinga �−1edge to 0. When V contains 1728, if V1 is non-empty then it contains 1 (` − ) vertices, 2 ` 
and each vertex in V1 has two incoming edges from 1728 but only one outgoing edge to 
1728. This 3-to-1 (resp. 2-to-1) discrepancy arises from the action of Aut(E) on the cyclic 
subgroups of E[`] when j(E) = 0 (resp. 1728). Otherwise, V satisfies all the requirements 
of an ̀ -volcano, and most of the algorithms designed for ̀ -volcanoes work just as well on 
ordinary components of G`(Fq) that contain 0 or 1728. 

23.3 Finding the floor 

The vertices that lie on the floor of an ̀ -volcano V are distinguished by their degree. 

Lemma 23.13. Let v be a vertex in an ordinary component V of depth d in G`(Fq). Either 
deg v ≤ 2 and v ∈ Vd, or deg v = ` + 1 and v 6∈ Vd. 

Proof. If d = 0 then V = V0 = Vd is a regular graph of degree at most 2 and v ∈ Vd. 
Otherwise, either v ∈ Vd and v has degree 1, or v 6∈ Vd and v has degree ̀  + 1. 

Given an arbitrary vertex v ∈ V , we would like to find a vertex on the floor of V . Our 
strategy is very simple: if v0 = j(E) is not already on the floor then we will construct a 
random path from v0 to a vertex vs on the floor. By a path, we mean a sequence of vertices 
v0, v1, . . . , vs such that each pair (vi−1, vi) is an edge and vi =6 vi−2 (no backtracking). 

Algorithm FindFloor 
Given an ordinary vertex v0 ∈ G`(Fq), find a vertex on the floor of its component. 

1. If deg v0 ≤ 2 then output v0 and terminate. 

2. Pick a random neighbor v1 of v0 and set s ← 1. 

3. While deg vs > 1: pick a random neighbor vs+1 6 and increment s.= vs−1 of vs 

4. Output vs. 
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Remark 23.14 (Removing known roots). As a minor optimization, rather than picking 
vs+1 as a root of φ(Y ) = Φ`(vs, Y ) in step 3 of the FindFloor algorithm, we may use 
φ(Y )/(Y − vs−1)e, where e is the multiplicity of vs−1 as a root of φ(Y ). This is slightly 
faster and eliminates the need to check that vs+1 6= vs−1. 

Notice that once FindFloor picks a descending edge (one leading closer to the floor), 
every subsequent edge must also be descending, because it is not allowed to backtrack along 
the single ascending edge and there are no horizontal edges below the surface. It follows that 
the expected length of the path chosen by FindFloor is δ + O(1), where δ is the distance 
from v0 to the floor along a shortest path. With a bit more e˙ort we can find a path of 
exactly length δ, a shortest path to the floor. The key to doing so is observe that all but 
at most two of the ̀  + 1 edges incident to any vertex above the floor must be descending 
edges. Thus if we construct three random paths from v0 that all start with a di˙erent initial 
edge, then one of the initial edges must be a descending edge, which necessarily leads to a 
shortest path to the floor. 

Algorithm FindShortestPathToFloor 
Given an ordinary v0 ∈ G`(Fq), find a shortest path to the floor of its component. 

1. Let v0 = j(E). If deg v0 ≤ 2 then output v0 and terminate. 

2. Pick three neighbors of v0 and extend paths from each of these neighbors in parallel, 
stopping as soon as any of them reaches the floor.1 

3. Output a path that reached the floor. 

The main virtue of FindShortestPathToFloor is that it allows us to compute δ, 
which tells us the level Vd−δ of j(E) relative to the floor Vd. It e˙ectively gives us an 
“altimeter” δ(v) that we may be used to navigate V . We can determine whether a given 
edge (v1, v2) is horizontal, ascending, or descending, by comparing δ(v1) to δ(v2), and we 
can determine the exact level of any vertex.2 

There are many practical applications of isogeny volcanoes, some of which you will 
explore on Problem Set 12. See the survey paper [8] for further details and references. 
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