5.1 The field of p-adic numbers

Definition 5.1. The field of p-adic numbers \mathbb{Q}_{p} is the fraction field of \mathbb{Z}_{p}.
As a fraction field, the elements of \mathbb{Q}_{p} are by definition all pairs $(a, b) \in \mathbb{Z}_{p}^{2}$, typically written as a / b, modulo the equivalence relation $a / b \sim c / d$ whenever $a d=b c$. But we can represent elements of \mathbb{Q}_{p} more explicitly by extending our notion of a p-adic expansion to allow negative indices, with the proviso that only finitely many p-adic digits with negative indices are nonzero. If we view p-adic expansions in \mathbb{Z}_{p} as formal power series in p, in \mathbb{Q}_{p} we now have formal Laurent series in p.

Recall that every element of \mathbb{Z}_{p} can be written in the form $u p^{n}$, with $n \in \mathbb{Z}_{\geq 0}$ and $u \in \mathbb{Z}_{p}^{\times}$, and it follows that the elements of \mathbb{Q}_{p} can all be written in the form up ${ }^{n}$ with $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$. If $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ is the p-adic expansion of $u \in \mathbb{Z}_{p}^{\times}$, then the p-adic expansion of $p^{n} u$ is $\left(c_{n}, c_{n+1}, c_{n+2}, \ldots\right)$ with $c_{n+i}=b_{i}$ for all $i \geq 0$ and $c_{n-i}=0$ for all $i<0$ (this works for both positive and negative n).

We extend the p-adic valuation v_{p} to \mathbb{Q}_{p} by defining $v_{p}\left(p^{n}\right)=n$ for any integer n; as with p-adic integers, the valuation of any p-adic number is just the index of the first nonzero digit in its p-adic expansion. We can then distinguish \mathbb{Z}_{p} as the subset of \mathbb{Q}_{p} with nonnegative valuations, and \mathbb{Z}_{p}^{\times}as the subset with zero valuation. We have $\mathbb{Q} \subset \mathbb{Q}_{p}$, since $\mathbb{Z} \subset \mathbb{Z}_{p}$, and for any $x \in \mathbb{Q}_{p}$, either $x \in \mathbb{Z}_{p}$ or $x^{-1} \in \mathbb{Z}_{p}$. Note that analogous statement is not even close to being true for \mathbb{Q} and \mathbb{Z}.

This construction applies more generally to the field of fractions of any discrete valuation ring, and a converse is true. Suppose we have a field k with a discrete valuation, which we recall is a function $v: k \rightarrow \mathbb{Z} \bigcup\{\infty\}$ that satisfies:
(1) $v(a)=\infty$ if and only if $a=0$,
(2) $v(a b)=v(a)+v(b)$,
(3) $v(a+b) \geq \min (v(a), v(b))$.

The subset of k with nonnegative valuations is a discrete valuation ring R, called the valuation ring of k, and k is its fraction field. As with p-adic fields, the unit group of the valuation ring of k consists of those elements whose valuation is zero.

5.2 Absolute values

Having defined \mathbb{Q}_{p} as the fraction field of \mathbb{Z}_{p} and noting that it contains \mathbb{Q}, we now want to consider an alternative (but equivalent) approach that constructs \mathbb{Q}_{p} directly from \mathbb{Q}. We can then obtain \mathbb{Z}_{p} as the valuation ring of \mathbb{Q}.
Definition 5.2. Let k be a field. An absolute value on k is a function $\left\|\|: k \rightarrow \mathbb{R}_{\geq 0}\right.$ with the following properties:
(1) $\|x\|=0$ if and only if $x=0$,
(2) $\|x y\|=\|x\| \cdot\|y\|$,
(3) $\|x+y\| \leq\|x\|+\|y\|$.

The last property is known as the triangle inequality, and it is equivalent to

$$
\begin{equation*}
\|x-y\| \geq\|x\|-\|y\| \tag{3}
\end{equation*}
$$

(replace x by $x \pm y$ to derive one from the other). The stronger property

$$
\|x+y\| \leq \max (\|x\|,\|y\|)
$$

is known as the nonarchimedean triangle inequality An absolute value that satisfies (3') is called nonarchimedean, and is otherwise called archimedean.

Absolute values are sometimes called "norms", but since number theorists use this term with a more specific meaning, we will stick with absolute value. Examples of absolute values are the usual absolute value $|\mid$ on \mathbb{R} or \mathbb{C}, which is archimedean and the trivial absolute value for which $\|x\|=1$ for all $x \in k^{\times}$, which is nonarchimedean. To obtain non-trivial examples of nonarchimedean absolute values, if k is any field with a discrete valuation v and c is any positive real number less than 1 , then it is easy to check that $\|x\|_{v}:=c^{v(x)}$ defines a nonarchimedean absolute value on k (where we interpret c^{∞} as 0). Applying this to the p-adic valuation v_{p} on \mathbb{Q}_{p} with $c=1 / p$ yields the p-adic absolute value $\left|\left.\right|_{p}\right.$ on \mathbb{Q}_{p} :

$$
|x|_{p}=p^{-v_{p}(x)} .
$$

We now prove some useful facts about absolute values.
Theorem 5.3. Let k be a field with absolute value $\left\|\|\right.$ and multiplicative identity 1_{k}.
(a) $\left\|1_{k}\right\|=1$.
(b) $\|-x\|=\|x\|$.
(c) $\|\|$ is nonarchimedean if and only if $\| n \| \leq 1$ for all positive integers $n \in k$.

Proof. For (a), note that $\left\|1_{k}\right\|=\left\|1_{k}\right\| \cdot\left\|1_{k}\right\|$ and $\left\|1_{k}\right\| \neq 0$ since $1_{k} \neq 0_{k}$. For (b), the positive real number $\left\|-1_{k}\right\|$ satisfies $\left\|-1_{k}\right\|^{2}=\left\|\left(-1_{k}\right)^{2}\right\|=\left\|1_{k}\right\|=1$, and therefore $\left\|-1_{k}\right\|=1$. We then have $\|-x\|=\left\|\left(-1_{k}\right) x\right\|=\left\|-1_{k}\right\| \cdot\|x\|=1 \cdot\|x\|=\|x\|$.

To prove (c), we first note that a positive integer $n \in k$ is simply the n-fold sum $1_{k}+\cdots+1_{k}$. If $\|\|$ is nonarchimedean, then for any positive integer $n \in k$, repeated application of the nonarchimedean triangle inequality yields

$$
\|n\|=\left\|1_{k}+\cdots+1_{k}\right\| \leq \max \left(\left\|1_{k}\right\|, \ldots,\left\|1_{k}\right\|\right)=1
$$

If $\|\|$ is instead archimedean, then we must have $\| x+y \|>\max (\|x\|,\|y\|)$ for some $x, y \in k^{\times}$. We can assume without loss of generality that $\|x\| \geq\|y\|$, and if we divide through by $\|y\|$ and replace x / y with x, we can assume $y=1$. We then have $\|x\| \geq 1$ and

$$
\|x+1\|>\max (\|x\|, 1)=\|x\| .
$$

If we divide both sides by $\|x\|$ and let $z=1 / x$ we then have $\|z\| \leq 1$ and $\|z+1\|>1$. Now suppose for the sake of contradiction that $\|n\| \leq 1$ for all integers $n \in k$. then

$$
\|z+1\|^{n}=\left\|(z+1)^{n}\right\|=\left\|\sum_{i=0}^{n}\binom{n}{i} z^{i}\right\| \leq \sum_{i=0}^{n}\left\|\binom{n}{i}\right\|\|z\|^{i} \leq \sum_{i=0}^{n}\left\|\binom{n}{i}\right\| \leq n+1 .
$$

But $\|z+1\|>1$, so the LHS increases exponentially with n while the RHS is linear in n, so for any sufficiently large n we obtain a contradiction.

Corollary 5.4. In a field k of positive characteristic p every absolute value || || is nonarchimedean and is moreover trivial if k is finite.

Proof. Every positive integer $n \in k$ lies in the prime field $\mathbb{F}_{p} \subseteq k$ and therefore satisfies $n^{p-1}=1$. This means the positive real number $\|n\|$ is a root of unity and therefore equal to 1 , so $\|n\|=1$ for all positive integers $n \in k$ and $\|\|$ is therefore nonarchimedean, by part (c) of Theorem 5.3. If $k=\mathbb{F}_{q}$ is a finite field, then for every nonzero $x \in \mathbb{F}_{q}$ we have $x^{q-1}=1$ and the same argument implies $\|x\|=1$ for all $x \in \mathbb{F}_{q}^{\times}$.

5.3 Absolute values on \mathbb{Q}

As with \mathbb{Q}_{p}, we can use the p-adic valuation v_{p} on \mathbb{Q} to construct an absolute value. Note that we can define v_{p} without reference to \mathbb{Z}_{p} : for any integer $v_{p}(a)$, is the largest integer n for which $p^{n} \mid a$, and for any rational number a / b in lowest terms we define

$$
v_{p}\left(\frac{a}{b}\right)=v_{p}(a)-v_{p}(b) .
$$

This of course completely consistent with our definition of v_{p} on \mathbb{Q}_{p}. We then define the p-adic absolute value of a rational number x to be

$$
|x|_{p}=p^{-v_{p}(x)}
$$

with $|0|_{p}=p^{-\infty}=0$, as above. Notice that rational numbers with large p-adic valuations have small p-adic absolute values. In p-adic terms, p^{100} is a very small number, and p^{1000} is even smaller. Indeed,

$$
\lim _{n \rightarrow \infty}\left|p^{n}\right|=\lim _{n \rightarrow \infty} p^{-n}=0
$$

We also have the usual archimedean absolute value on \mathbb{Q}, which we will denote by $\left|\left.\right|_{\infty}\right.$, for the sake of clarity. One way to remember this notation is to note that archimedean absolute values are unbounded on \mathbb{Z} while nonarchimedean absolute values are not (this follows from the proof of Theorem 5.3).

We now wish to prove Ostrowski's theorem, which states that every nontrivial absolute value on \mathbb{Q} is equivalent either to one of the nonarchimedean absolute values $\left.\left|\left.\right|_{p}\right.$, or to $|\right|_{\infty}$. We first define what it means for two absolute values to be equivalent.

Definition 5.5. Two absolute values $\|\|$ and $\| \|^{\prime}$ on a field k are said to be equivalent if there is a positive real number α such that

$$
\|x\|^{\prime}=\|x\|^{\alpha}
$$

for all $x \in k$.
Note that two equivalent absolute values are either both archimedean or both nonarchimedean, by Theorem 5.3 part (c), since $c^{\alpha} \leq 1$ if and only if $c \leq 1$, for any $c, \alpha \in \mathbb{R}_{>0}$.

Theorem 5.6 (Ostrowski). Every nontrivial absolute value on \mathbb{Q} is equivalent to some $\left|\left.\right|_{p}\right.$, where p is either a prime, or $p=\infty$.

Proof. Let $\|\|$ be a nontrivial absolute value on \mathbb{Q}. If $\| \|$ is archimedean then $\|b\|>1$ for some positive integer b. Let b be the smallest such integer and let α be the positive real
number for which $\|b\|=b^{\alpha}$ (such an α exists because we necessarily have $b>1$). Every other positive integer n can be written in base b as

$$
n=n_{0}+n_{1} b+n_{2} b^{2}+\cdots+n_{t} t^{t}
$$

with integers $n_{i} \in[0, b-1]$ and $n_{t} \neq 0$. We then have

$$
\begin{aligned}
\|n\| & \leq\left\|n_{0}\right\|+\left\|n_{1} b\right\|+\left\|n_{2} b^{2}\right\|+\cdots+\left\|n_{t} b^{t}\right\| \\
& =\left\|n_{0}\right\|+\left\|n_{1}\right\| b^{\alpha}+\left\|n_{2}\right\| b^{2 \alpha}+\cdots+\left\|n_{t}\right\| b^{t \alpha} \\
& \leq 1+b^{\alpha}+b^{2 \alpha}+\cdots+b^{t \alpha} \\
& =\left(1+b^{-\alpha}+b^{-2 \alpha}+\cdots+b^{-t \alpha}\right) b^{t \alpha} \\
& \leq c b^{t \alpha} \\
& \leq c n^{\alpha}
\end{aligned}
$$

where c is the sum of the geometric series $\sum_{i=0}^{\infty}\left(b^{-\alpha}\right)^{i}$, which converges because $b^{-\alpha}<1$. This holds for every positive integer n, so for any integer $N \geq 1$ we have

$$
\|n\|^{N}=\left\|n^{N}\right\| \leq c\left(n^{N}\right)^{\alpha}=c\left(n^{\alpha N}\right)
$$

and therefore $\|n\| \leq c^{1 / N} n^{\alpha}$. Taking the limit as $N \rightarrow \infty$ we obtain

$$
\|n\| \leq n^{\alpha}
$$

for every positive integer n. On the other hand, for any positive integer n we can choose an integer t so that $b^{t} \leq n<b^{t+1}$. By the triangle inequality $\left\|b^{t+1}\right\| \leq\|n\|+\left\|b^{t+1}-n\right\|$, so

$$
\begin{aligned}
\|n\| & \geq\left\|b^{t+1}\right\|-\left\|b^{t+1}-n\right\| \\
& =b^{(t+1) \alpha}-\left\|b^{t+1}-n\right\| \\
& \geq b^{(t+1) \alpha}-\left(b^{t+1}-n\right)^{\alpha} \\
& \geq b^{(t+1) \alpha}-\left(b^{t+1}-b^{t}\right)^{\alpha} \\
& =b^{(t+1) \alpha}\left(1-\left(1-b^{-1}\right)^{\alpha}\right) \\
& \geq d n^{\alpha}
\end{aligned}
$$

for some real number $d>0$ that does not depend on n. Thus $\|n\| \geq d n^{\alpha}$ holds for all positive integers n and, as before, by replacing n with n^{N}, taking N th roots, and then taking the limit as $N \rightarrow \infty$, we deduce that

$$
\|n\| \geq n^{\alpha}
$$

and therefore $\|n\|=n^{\alpha}=|n|_{\infty}^{\alpha}$ for all positive integers n. For any other positive integer m,

$$
\begin{aligned}
\|n\| \cdot\|m / n\| & =\|m\| \\
\|m / n\| & =\|m\| /\|n\|=m^{\alpha} / n^{\alpha}=(m / n)^{\alpha},
\end{aligned}
$$

and therefore $\|x\|=x^{\alpha}=|x|_{\infty}^{\alpha}$ for every positive $x \in \mathbb{Q}$, and $\|-x\|=\|x\|=x^{\alpha}=|-x|_{\infty}^{\alpha}$, so $\|x\|=|x|_{\infty}^{\alpha}$ for all $x \in \mathbb{Q}$ (including 0).

We now suppose that $\|\|$ is nonarchimedean. If $\| b \|=1$ for all positive integers b then the argument above proves that $\|x\|=1$ for all nonzero $x \in \mathbb{Q}$, which is a contradiction
since $\|\|$ is nontrivial. So let b be the least positive integer with $\| b \|<1$. We must have $b>1$, so b is divisible by a prime p. If $b \neq p$ then $\|b\|=\|p\|\|b / p\|=1 \cdot 1=1$, which contradicts $\|b\|<1$, so $b=p$ is prime.

We know prove by contradiction that p is the only prime with $\|p\|<1$. If not then let $q \neq p$ be a prime with $\|q\|<1$ and write $u p+v q=1$ for some integers u and v, both of which have absolute value at most 1 , since $\left\|\|\right.$ is nonarchimedean. ${ }_{-}^{1}$ We then have

$$
1=\|1\|=\|u p+v q\| \leq \max (\|u p\|,\|v q\|)=\max (\|u\| \cdot\|p\|,\|v\| \cdot\|q\|) \leq \max (\|p\|,\|q\|)<1,
$$

which is a contradiction.
Now define the real number $\alpha>0$ so that $\|p\|=p^{-\alpha}=|p|_{p}^{\alpha}$. Any positive integer n may be written as $n=p^{v_{p}(n)} r$ with $v_{p}(r)=0$, and we then have

$$
\|n\|=\left\|p^{v_{p}(n)} r\right\|=\left\|p^{v_{p}(n)}\right\| \cdot\|r\|=\|p\|^{v_{p}(n)}=|p|_{p}^{\alpha v_{p}(n)}=|n|_{p}^{\alpha} .
$$

This then extends to all rational numbers, as argued above.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

) DORO1D

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ This is a simplification of the argument given in class, as pointed out by Ping Ngai Chung (Brian).

