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Throughout this lecture C/k is a curve over a perfect but not necessarily algebraically
closed field k and F/k denotes the corresponding function field.1

In the last lecture we defined `(D) as the dimension of the Riemann-Roch space L(D) of
the divisor D, and we proved that `(D) is invariant under linear equivalence. It is immediate
from the definitions that for any divisors A ≤ B we have `(A) ≤ `(B) and deg(A) ≤ deg(B).
Less obvious is the fact that

deg(A)− `(A) ≤ deg(B)− `(B),

but we proved that this holds for all A ≤ B; see Lemma 21.8. As we are particularly
interested in the quantities on the two sides of the above inequality, let us define

r(D) := deg(D)− `(D).

Then r(D) is preserved under linear equivalence and A ≤ B =⇒ r(A) ≤ r(B). At the end
of Lecture 21 we proved that for every curve C/k there is an integer g ≥ 0 such that

r(D) ≤ g − 1 (1)

for all D ∈ Divk C. We also showed that for C ' P1 we can take g = 0, and that r(D) = −1
for all D ≥ 0. We always have r(0) = 0− 1 = −1, so r(D) ≥ −1 for all D ≥ 0.

22.1 The genus of a curve

We now define the genus of a curve.

Definition 22.1. The genus of the curve C/k is defined by

g := max{r(D) + 1 : D ∈ Divk(C)}.

In other words, g is the least integer for which (1) holds.

Remark 22.2. This definition of the genus of a curve is sometimes called the geometric
genus to distinguish it from other notions of genus that we won’t consider in this course.
For (smooth projective) curves the different definitions all agree.

We now give the complete statement of Riemann’s Theorem, most of which was proved
in Theorem 21.15.

Theorem 22.3 (Riemann’s Theorem). Let C/k be a curve of genus g. Then r(D) ≤ g− 1
for all D ∈ Divk C, and equality holds for all divisors of sufficiently large degree.

Proof. We have already proved the inequality. Let us pick a divisor A for which r(A) = g−1;
some such A exists, by the definition of g. We will show that r(D) = g − 1 whenever
degD ≥ degA+ g = c.

1Recall that our curves are smooth projective varieties of dimension one, and that our varieties are
geometrically irreducible.
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So assume degD ≥ c. We have r(D −A) = deg(D −A)− `(D −A) ≤ g − 1, so

`(D −A) ≥ deg(D −A) + 1− g ≥ c− degA+ 1− g = 1.

There is a nonzero f ∈ L(D −A), so let D′ = D + div f ≥ D +A−D = A. Then

r(D) = r(D′) ≥ r(A) = g − 1,

and we already know that r(D) ≤ g − 1, so r(D) = g − 1.

We now want to refine Riemann’s Theorem to obtain a more precise statement that
will tell us exactly what “sufficiently large” means and give us a measure of how far the
inequality r(D) ≤ g − 1 is from being an equality for any particular divisor D; this is the
Riemann-Roch theorem.

Definition 22.4. Let C/k be a curve of genus g. For D ∈ Divk C, the non-negative integer

i(D) := g − 1− r(D)

is the index of speciality of D. Divisors for which i(D) > 0 are said to be special.

We know from Riemann’s Theorem that i(D) = 0 for all D of sufficiently large degree,
and we also know that i(0) = g, since

i(0) = g − 1− r(0) = g − 1− deg 0 + `(0) = g − 1− 0 + 1 = g.

22.2 The ring of adeles

To compute the index of speciality we introduce the adele ring. Our presentation roughly
follows that in [2, §1.5].

Definition 22.5.∏ The adele ring of the function field F/k is the subring A = AF of the
direct product P F consisting of those elements α = (αP ) for which αP ∈ OP for all but
finitely many P . The elements of A are called adeles.

Remark 22.6. The adele ring A is also called the ring of repartitions. It is often defined
in terms of the P -adic completions of F , but we don’t need to take completions to prove
the Riemann-Roch theorem so we won’t (some authors refer to A as the ring of pre-adeles).

The function field F/k is canonically embedded in A via the diagonal embedding

f 7→ (f, f, f, . . .).

Adeles of this form are called principal adeles, terminology that is consistent with our
notion of a principal divisor; those divisors that correspond to elements of the function
field. Like F , the adele ring A is a k-vector space. We extend each valuation ordP of F/k
to a valuation on A by defining ordP (α) = ordP (αP ) for αP = 0 and setting ordP (0) =∞,
where ∞ is greater than any element of Z.

Definition 22.7. For a divisor D the adele space of D is the k-vector space

A(D) := {α ∈ A : ordP (α) ≥ −ordP (D) for all places P}.

It contains the Riemann-Roch space L(D) = A(D) ∩ F as a subspace, and it is in turn a
subspace of the adele ring A.
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The adele space of a divisor gives us additional information beyond what we get from the
Riemann-Roch space that will allow us to characterize the index of speciality in a canonical
way. We first prove three lemmas.

Lemma 22.8. For any two divisors A ≤ B we have A(A) ⊆ A(B) and

dimA(B)/A(A) = degB − deg(A),

as k-vector spaces.

Proof. The inclusion A(A) ⊆ A(B) is clear. As in the proof of Lemma 21.8, it suffices to
consider the case B = A+P for some place P , and the proof is exactly the same. We pick a
uniformizer t for P and define the linear map φ : A(B)→ k(P ) by φ(f) = (tnf)(P ), where
n = ordP (B). The map φ is surjective and its kernel is A(A), hence

dim(A(B)/A(A)) = dim k(P ) = degP = degB − degA.

Lemma 22.9. For any two divisors A ≤ B we have A(A) + F ⊆ A(B) + F and

dim
A(B) + F

= r(B) r
(A) + F

− (A),
A

as k-vector spaces, where F is embedded diagonally in A.

Proof. The inclusion is clear, and the map

A(B)→ A(B) + F → (A(B) + F )/(A(A) + F )

is surjective, with kernel A(B) ∩ (A(A) + F ). We therefore have

A(B) + F A(B)' =
A(B) A(B)/A(A)' .

A(A) + F A(B) ∩ (A(A) + F ) A(A) + L(B) (A(A) + L(B))/A(A)

Applying Lemma 22.8 and taking dimensions gives

A(B) + F A(A) + L(B)
dim = degB deg
A(A

− A− dim .
) + F A(A)

Finally we note that

A(A) + L(B) ) (B)
dim = dim

L(B
= dim

L
= `(B) `(A),

A(A) A(A) ∩ L(B) L(A)
−

thus

dim
A(B) + F

= degB A
(A) + F

− deg − (`(B)− `(A)) = r(B)− r(A).
A

Lemma 22.10. For any divisor D for which r(D) = g − 1 we have

A = A(D) + F.

Proof. Let α ∈ A. We will show α ∈ A(D) + F . Let us pick a divisor D′ ≥ D such that
α ∈ A(D′)+F ; this is clearly possible. We have g−1 = r(D) ≤ r(D′) ≤ g−1, by Riemann’s
Theorem, so r(D′) = g − 1. By Lemma 22.9 we have

dim
A(D′) + F

= r(D′) =
(D) + F

− r(D) (g − 1)− (g − 1) = 0,
A

so A(D′) + F = A(D) + F and therefore α ∈ A(D) + F .
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We can now determine the index of speciality of a divisor in terms of its adele space.

Theorem 22.11. Let F/k be a function field. For any divisor D ∈ Divk F we have

i(D) = dimA/(A(D) + F ).

Proof. By Riemann’s Theorem there exists a divisor D′ ≥ D for which r(D′) = g − 1; we
just need to make the degree of D′ ≥ D large enough, and this is clearly possible; if D = 0
we can take a multiple of D0 +D . By Lemma 22.10 we then have th∞ A = A(D′) + F , us

dim
A

= dim
A(D′) + F

= r(D′)− r(D) = g 1 r(D) = i(D),
A(D) + F D) +

− −
A( F

where we use Lemma 22.9 to get the second equality.

We now have an equality that holds for all divisors

g = r(D) + 1 + i(D),

and we know that i(D) = 0 for all divisors of sufficiently large degree. But we would like
to characterize i(D) in a canonical way that does not involve the adele ring; this will yield
the Riemann-Roch theorem.

22.3 Canonical divisors

Definition 22.12. Let F/k be a function field and let A be its adele ring. For a divisor
D ∈ Divk F the space of Weil differentials Ω(D) is the orthogonal complement of A(D)+F
(its annihilator in the dual space A∨). Explicitly, this is the set of all linear functionals
ω : A → k that vanish on A(D) + F . The k-vector space

Ω = ΩF :=
⋃

Ω(D)
D∈Divk F

is the space of Weil differentials for F/k.

It is clear that Ω is a k-vector space: if ω1 ∈ Ω(D1) and ω2 ∈ Ω(D2) then ω1 + ω2 lies
in Ω(D), where D = D1 ∧D2 is defined by ordP (D) = min(ordP (D1), ordP (D2)).

Lemma 22.13. For any divisor D ∈ Divk F we have dim Ω(D) = i(D).

Proof. The quotient space A/(A(D)+F ) has finite dimension i(A), by Theorem 22.11, thus
it has the same dimension as its dual, which is canonically isomorphic to the orthogonal
complement of A(D) + F ), which is precisely ΩF (D).2 Thus dim Ω(D) = i(D).

We have seen that the space of Weil differentials Ω is a k-vector space; we now make Ω
an F -vector space by defining fω ∈ Ω for f ∈ F and ω ∈ Ω as the linear functional A → k
that sends α to ω(fα), in other words

(fω)(α) = ω(fα),

for all α ∈ A.

2If V/W is any quotient, the map Φ: (V/W )∨ →W⊥ defined by Φ(λ)(v) = λ(v+W ) is an isomorphism.
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Theorem 22.14. Let F/k be a function field and let Ω be its space of Weil differentials.
Then dimF Ω = 1.

Proof. Clearly Ω = 0, so let ω1, ω2 ∈ Ω be nonzero. We will show that ω1/ω2 ∈ F .
For i = 1, 2, let Di be such that ωi ∈ Ω(Di) and define the k-linear map

φi : L(Di +D)→ Ω(−D),

f 7→ fωi,

where D is a fixed divisor to be determined. For any α+ g in A(−D) + F we have

(fωi)(α+ g) = ωi(fα) + ωi(fg) = 0 + 0 = 0,

since ωi vanishes on fg ∈ F and

ordP (fα) = ordP (f) + ordP (α) ≥ ordP (−Di −D) + ordP (D) = ordP (−Di)

for all P , so ωi vanishes on fα. Thus φi is well defined, and it is clearly injective.
We claim that for an appropriate choice of D we have

φ1(L(D1 +D)) ∩ φ2(L(D2 +D)) = {0}. (2)

Assuming the claim, we may pick nonzero f1 ∈ L(D1 +D) and f2 ∈ L(D2 +D) such that
φ1(f1) = φ2(f2). Then f1ω1 = f2ω2 and ω1/ω2 = f2/f1 ∈ F as desired.

We now prove that there is a divisor D for which (2) holds. By Riemann’s Theorem, we
can pick D > 0 of sufficiently large degree so that r(Di +D) = g− 1 for i = 1, 2. Let Ui be
the image of L(Di +D) in Ω(−D) under φi. We want to show dim(U1 ∩ U2) > 0. We have

dim Ω(−D) = i(−D) = g − 1− r(−D) = g − 1− deg(−D) + `(−D) = g − 1 + deg(D),

since `(−D) = 0 for D > 0. We have U1 + U2 ⊆ Ω(−D), and therefore

dim Ω(−D) ≥ dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2),

where all the dimensions are as k-vector spaces. Thus

dim(U1 ∩ U2) ≥ dimU1 + dimU2 − dim Ω(−D)

= `(D1 +D) + `(D2 +D)− g + 1− degD

= deg(D1 +D)− r(D1 +D) + deg(D2 +D)− r(D2 +D)− g + 1− degD

= deg(D1 +D)− g + 1 + deg(D2 +D)− g + 1− g + 1− degD

= degD + degD1 + degD2 − 3g + 3.

By choosing D of sufficiently large degree, we can make the RHS positive.

Lemma 22.15. For any nonzero ω ∈ Ω there is a unique divisor Dω such that D ≤ Dω for
all divisors D for which ω ∈ Ω(D).

Proof. By Lemma 22.13, we have dim Ω(D) = i(D), so i(D) > 0 for all divisors D such that
ω ∈ Ω(D). At least one such D exists, since ω ∈ Ω, so let us choose Dω maximal subject to
the constraint ω ∈ Ω(Dω); a maximal Dω exists because i(D) = 0 for all D of sufficiently
large degree, by Riemann’s Theorem. We now prove that Dω is unique.
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Suppose not. Then there are two distinct divisors D1 and D2 that are maximal subject
to the constraints ω ∈ Ω(D1) and ω ∈ Ω(D2). Since D1 and D2 are incomparable, there
exist distinct places P1 and P2 such that

ordP1(D1) > ordP1(D2) and ordP2(D2) > ordP2(D1).

We claim that ω ∈ Ω(D1 +P2), contradicting the maximality of D1. Write α ∈ A(D1 +P2)
as α = α1+α2, where α1 is zero at P2 and equal to α otherwise, while α2 is equal to α at P2

and zero otherwise. Then α1 ∈ A(D1) and α2 ∈ A(D2) and ω(α) = ω(α1) + ω(α2) = 0,
since ω ∈ Ω(D1) and ω ∈ Ω(D2). But then ω ∈ Ω(D1 + P2) as claimed.

Definition 22.16. For a nonzero Weil differential ω ∈ Ω we define the divisor of ω to be
the unique divisor

divω := Dω

given by Lemma 22.15. A divisor D is said to be canonical if D = divω for some ω ∈ Ω.
We also define ordP (ω) := ordP (divω).

Lemma 22.17. For any nonzero f ∈ F and nonzero ω ∈ Ω we have

div(fω) = div f + divω.

Proof. We have fω ∈ Ω(div f + divω), since for any g + α in A(div f + divω) + F :

(fω)(g + α) = ω(fg + fα) = ω(fg) + ω(fα) = 0 + 0 = 0,

because ω vanishes on F and

ordP (fα) = ordP (f) + ordP (α) ≥ ordP (div f) + ordP (−D − div f) = ordP (−D)

for all places P of F , so ω(fα) = 0. It follows that div fω ≥ div f + divω.
The same argument shows that divω = div f−1fω ≥ div f−1 + div fω = div fω− div f ,

and therefore div fω ≤ div f + divω, so the claimed equality holds.

Corollary 22.18. The canonical divisors form a single linear equivalence class.

Proof. Let D1 = divω1 and D2 = divω2 be two canonical divisors for F/k. Then ω1 and
ω2 are both nonzero, and by Theorem 22.14, we have ω2 = fω1 for some f ∈ F×. But then
D2 = divω2 = div fω1 = div f + divω1 = div f +D1, so D1 ∼ D2.

Now suppose D1 = divω1 is a canonical divisor and D2 = D1 + div f for some f ∈ F×.
Then D2 = divω1 + div f = div fω1 is canonical.

Thus their is a unique element of the Picard group Pick C corresponding to the class
of canonical divisors. This is a truly remarkable fact; given the rather abstract definition
of the Picard group, there is no a priori reason to expect that it should have a uniquely
distinguished element other than zero. As we shall see in the next lecture, the canonical
divisor class is typically not the zero divisor, and the case where it is is actually quite
interesting.

We now show that, like elements of the function field, Weil differentials are determined
up to a scalar factor in k× by their divisors.

Corollary 22.19. Two nonzero Weil differentials ω1, ω2 ∈ Ω have the same divisor if and
only if one ω2 = cω1 for some c ∈ k×.

Proof. Since ω1 = 0 and dimF Ω = 1, we can write ω2 = fω1 for some f ∈ F×. Then
divω2 = div fω1 = div f + divω1, so if divω1 = divω2 then div f = 0 and f ∈ k×.
Conversely, divω2 = div cω1 = div c+ divω1 = divω1, for any c ∈ k×.
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22.4 The Riemann-Roch Theorem

We now have almost everything we need to prove the Riemann-Roch Theorem. The last
ingredient is the Duality Theorem, which gives us an isomorphism between Riemann-Roch
spaces and spaces of Weil differentials.

Theorem 22.20 (Duality). For any divisor D and canonical divisor W = divω, the linear
map φ : L(W −D)→ Ω(D) defined by φ(f) = fω is an isomorphism of k-vector spaces. In
particular, we have i(D) = `(W −D) for all divisors D.

Proof. For any nonzero f ∈ L(W −D) and ω ∈ Ω(D) we have

div fω = div f + divω ≥ −(W −D) +W = D,

thus fω ∈ Ω(D), and imφ ⊆ Ω(D). It is clear that φ is linear, and its kernel is obviously
trivial, so it is injective. To show that φ is surjective, let ω′ be any nonzero element of
Ω(D). By Theorem 22.14 we can write ω′ = fω for some f ∈ F×, and since

div f +W = div f + divω = div fω = divω1 ≥ D,

we have div f ≥ −(W −D) and therefore f ∈ L(W −D), so ω′ = φ(f). Thus φ is surjective,
hence an isomorphism, and i(D) = dim Ω(D) = `(W −D), by Lemma 22.13.

Theorem 22.21 (Riemann-Roch Theorem). Let W be a canonical divisor of the genus g
curve C/k. For every divisor D we have

`(D) = deg(D) + 1− g + `(W −D).

Proof. Immediate from Definition 22.4 and Theorem 22.20.

Corollary 22.22. For any canonical divisor W of a genus g curve we have

`(W ) = g, degW = 2g − 2, i(W ) = 1.

Proof. We apply the Riemann-Roch Theorem twice, first with D = 0, which gives

`(0) = deg 0 + 1− g + `(W ),

and since deg 0 = 0 and `(0) = 1, we have `(W ) = g. Taking D = W gives

`(W ) = degW + 1− g + `(0),

which implies degW = 2g − 2 and i(W ) = `(W −W ) = 1.

We can now give an exact value for the constant c in Riemann’s Theorem.

Corollary 22.23. For all divisors D of a genus g curve C/k with degD > 2g− 2 we have

`(D) = degD + 1− g,

equivalently, i(D) = 0.
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Proof. By the Riemann-Roch Theorem,

`(D) = deg(D) + 1− g + `(W −D)

where W is a canonical divisor. We have

deg(W −D) = degW − degD < 2g − 2− (2g − 2) = 0,

so `(W −D) = 0 and the corollary follows.

We can also give some more down-to-earth characterization of a canonical divisor.

Corollary 22.24. For a divisor D of a genus g curve, the following are equivalent:

(a) D is a canonical divisor.

(b) `(D) = g and degD = 2g − 2.

(c) i(D) = 1 and degD is maximal among divisors with i(D) = 1.

Proof. That (a) implies (b) is immediate from Corollary 22.22, and the implications (b)⇒(c)
and (c)⇒(a) both follow from the combination of Corollaries 22.22 and 22.23.

Finally we note a very useful fact.

Theorem 22.25. The genus of a curve C/k over a perfect field k is preserved under base
extension.3

Proof. Let k′/k be an extension of the perfect field k (hence a separable extension). It
suffices to show that if D ∈ Divk C is a canonical divisor for C/k then it is also a canonical
divisor for C/k′. Clearly degD is not changed under base extension (some closed points may
split, but the total degree does not change), so it suffices to show that the dimension `(D)
of the Riemann-Roch space L(D) ⊆ k(C) does not change under base extension. The key
point here is that any finite-dimensional k′-vector subspace of k′(C) has a basis that lies in
k(C); this follows from a general algebraic result that we will not prove here; see Proposition
1 in §3 of the appendix to [1]. Thus `(D) does not change under base extension.
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