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As usual, k is a perfect field, but not necessarily algebraically closed. Throughout this
lecture C/k denotes a curve (smooth projective variety of dimension one) and F/k the
corresp∑onding function field. To simplify the notation, for any place P of F/k and divisor
D = nPP , we define ordP (D) = nP .

21.1 Riemann-Roch spaces

We have seen that the degree of a divisor is a key numerical invariant that is preserved
under linear equivalence; recall that two divisors are linearly equivalent if their difference is
a principal divisor, equivalently, they correspond to the same element of the Picard group.
We now want to introduce a second numerical invariant associated to each divisor. In order
to do this we first partially order divisors by defining the relation ≤ on Divk C by

A ≤ B ⇐⇒ ordP (A) ≤ ordP (B) for all P .

As usual, P ranges over all closed points of C/k, equivalently, all places of k(C), but of
course the inequality on the right is automatically satisfied for all but finitely many P . This
partial ordering is compatible with divisor addition, since

A ≤ B =⇒ A+ C ≤ B + C,

for any divisor C. We also note that

A ≤ B and C ≤ D =⇒ A+ C ≤ B +D.

It is important to remember that ≤ is not a total ordering on Divk C; most pairs of divisors
are incomparable.

Definition 21.1. A divisor D ≥ 0 is said to be effective. As with principal divisors
div f = div0 f − div f , every divisor can be written uniquely as the difference of two∞
effective divisors, as D = D0 −D , where∞

D0 :=
∑

ordP (D)P and D := ord D∞ − P ( )P.

ordP (D)>0 ordP

∑
(D)<0

We now define the Riemann-Roch space of a divisor.

Definition 21.2. The Riemann-Roch space of a divisor D is the k-vector space

L(D) := {f ∈ k(C)× : div f ≥ −D} ∪ {0}.

That L(D) is a vector space follows immediately from:

1. div λf = div f + div λ = div f for all λ ∈ k×;

2. ordP (f + g) ≥ min(ordP (f), ordP (g) for all f, g ∈ F×.

Example 21.3. If D = 3P − 2Q then L(D) is the set of functions in k(C) that have at
most a triple pole at P , and at least a double zero at Q, and poles nowhere else (but they
may have have zeros of any order at points other than Q).

Andrew V. Sutherland
1



Example 21.4. If D = −P then L(D) is the set of functions that have a zero at P and no
poles at all. The only such function is the zero function (which lies in L(D) by definition).
More generally, for any D < 0 we have L(D) = {0}.

Example 21.5. If D = 0 then L(D) is the set of functions that have no poles at all. By
Corollary 19.23, for f ∈ L(0) we have deg div f = 0 if and only if f∞ ∈ k×, so L(0) = k.

We now show that L(D) is preserved (up to isomorphism) by linear equivalence.

Lemma 21.6. For any linearly equivalent divisors A ∼ B we have L(A) ' L(B).

Proof. We have A−B = div f for some f ∈ k(C)×, and we claim that the maps g 7→ fg and
g 7→ g/f are inverse k-linear maps from L(A) to L(B) and from L(B) to L(A), respectively.
Linearity is clear, and if div g ≥ −A then

div fg = div f + div g ≥ div f −A = −B.

Similarly, if div g ≥ −B then

div g/f = div g − div f ≥ −B − div f = −A.

Thus we have defined linear transformations from L(A) to L(B), hence L(A) ' L(B).

The following lemma shows that non-trivial Riemman-Roch spaces arise only (and al-
ways) for divisors that are linearly equivalent to an effective divisor.

Lemma 21.7. We have L(D) = {0} if and only if D ∼ D′ for some D′ ≥ 0.

Proof. If f ∈ L(D) is nonzero, then div f ≥ −D, and D ∼ D′ = D+ div f ≥ 0. Conversely,
if D ∼ D′ ≥ 0 then −D ≤ D′ −D = div f for some f ∈ k(C)×, hence L(D) = {0}.

Lemma 21.8. For any two divisors A ≤ B we have L(A) ⊆ L(B) and

dim(L(B)/L(A)) ≤ degB − degA.

Proof. It is clear that L(A) ⊆ L(B), and that the inequality holds if A = B. We now prove
the inequality in the case B = A + P , for some place P . Let t be a uniformizer at P ,
let k(P ) = OP /P be the residue field of P , and let n = ordP (B). Now define the linear
transformation φ : L(B)→ k(P ) by φ(f) = (tnf)(P ) = tnf mod P ; we have

ordP (tnf) = n+ ordP (f) ≥ 0

for f ∈ L(B), so tnf ∈ OP and φ is well-defined. The image of φ lies in k(P ) = kdegP , and
its kernel consists of subspace of functions f ∈ L(B) for which ordP (tnf) ≥ 1, equivalently,
ordP (f) ≥ 1− n = −ordP (A), which is precisely L(A). We have L(B)/ kerφ ' imφ, so

dim(L(B)/L(A)) = dim imφ ≤ dim k(P ) = degP = degB − degA. (1)

The general case follows from repeatedly application of the same result. If

A = B0 < B1 < B2 < · · · < Bm = B,

where B =
∑
nPP and m =

∑
nP , then each difference Bi+1 − Bi is a single place Pi.

Applying (1) gives dim(L(Bi+1)/L(Bi)) = degBi+1− degBi = degPi. Summing yields the
desired result dim(L(B)/L(A)) ≤ degB − degA.
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We now prove that the dimension of a Riemann-Roch space is finite.

Theorem 21.9. For any divisor D we have dimL(D) ≤ degD0 + 1.

Proof. Applying Lemma 21.8 with B = D and A = 0 yields

dim(L(D0)/L(0)) ≤ degD0 − deg 0 = degD0.

As noted in Example 21.5, we have L(0) = k, and therefore

dimL(D0) = dim(L(D0)/L(0)) + 1 ≤ degD0 + 1.

We also have D ≤ D0, so by Lemma 21.8, L(D) ⊆ L(D0), and we have

dimL(D) ≤ dimL(D0) ≤ degD0 + 1

as claimed.

Definition 21.10. The dimension `(D) of a divisor is the dimension of L(D).

The following corollary summarizes what we know about `(D) so far.

Corollary 21.11. The following hold:

(a) `(0) = 1.

(d) If A ∼ B then `(A) = `(B) and deg(A) = deg(B).

(c) For any A ≤ B we have `(B)− `(A) ≤ degB − degA.

(d) For all D ≥ 0 we have `(D) ≤ degD + 1.

(e) If degD < 0 then `(D) = 0.

Proof. (a) follows from Example 21.5, (b) is Lemma 21.6 and Corollary 19.23, (c) is
Lemma 21.6, (d) is Theorem 21.9, and (e) follows from Lemma 21.7.

An equivalent form of (c) that we will often use is

A ≤ B =⇒ degA− `(A) ≤ degB − `(B).

Lemma 21.12. If degD = 0 then `(D) = 1 if D is principal and `(D) = 0 otherwise.

Proof. If D = div f is principal, then f ∈ L(D), so `(D) ≥ 1 and by Lemma 21.7 we must
have D ∼ D′ ≥ 0. But degD′ = degD = 0, so D′ = 0 and `(D) = `(0) = 1. Now suppose
`(D) ≥ 1. As just argued, we must have `(D) = 1, so there is a nonzero f ∈ L(D), and
since div f ≥ −D, we have D + div f ≥ 0. But deg(D + div f) = 0, so D + div f = 0
and therefore D = −div f = div 1/f is principal. Taking the contrapositive, if D is not
principal then we must have `(D) = 0.

It follows from Lemma 21.12 that the inequality in Theorem 21.9 is not tight for curves
for which Pic0k C is not trivial, since this implies the existence of non-principal divisors of
degree 0. On the other hand, for C = P1, the inequality is tight for all effective divisors
(as noted at the end of Lecture 20, there is a gap between these two cases, one can have
Pic0k C = {0} and C 6' P1; we will address this gap in the next lecture).

Lemma 21.13. If C is isomorphic to P1 then `(D) = degD + 1 for all D ≥ 0.
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Proof. If C ' P1 then k(C∑) is the field of all rational functions over k. We claim that given
any effective divisor A = nPP we can construct a function fA ∈ k(C) with div f = A.∞

Proof of claim: We just need to show that we can construct div0 f with support disjoint
from div f . If k is infinite this is easy: pick a degree one place P∞ 6∈ Supp(A) and let
div0 f = (degA)P . If k is finite, then, as noted in Lecture 3, there exist monic irreducible
polynomials of every degree in k[t], and each corresponds to a place of k(C). If A consists
of more than a single place, no place of degree degA can lie in the support of A, so pick
one such place P and let div0 f = P . Otherwise A consists of a single place and we can
pick a degree one place P not in the support of A and let div0 f = (degA)P as above.

Now let 0 = A0 < A1 < · · · < Am = D be a maximal chain of divisors, let Pi = Ai−Ai−1
for 1 ≤ i ≤ m, and let f1, . . . , fm ∈ k(C) satisfy div f∞ i = Ai (note that the list P1, . . . , Pm

may contain repetitions). These functions are linearly independent over k, since for any
nonempty subset the fi with maximal index i has a pole at Pi of order greater than that
of any fj with j < i, and the triangle equality then precludes any non-trivial relations.
Finally, for each point Pi there is a subspace Vi ⊆ L(D) corresponding to functions f for
which div f = div fi, and L(D) contains the direct sum of these subspaces, since no pair
intersects non-trivially. If we consider the linear transformation φ : Vi → k(Pi) defined by
f 7→ n(t i

i f)(Pi), where ti is a uniformizer for Pi and ni = −ordPi(f), it is clear that kerφ is
trivial, and φ is surjective becuase k(C) is the rational function field. So dimVi = degPi.

We then have

`(D) = dimL(D) ≥ dimL(0) +

as claimed.

∑
dimVi = 1 +

∑
degPi = 1 + degD,

Remark 21.14. If you think the proof of Lemma 21.13 is a lot of effort to prove something
that should be obvious, your are right. Once we prove the Riemann-Roch theorem it will
follow trivially (as will many other results). Our purpose in proving it now is to help
motivate the definition of genus.

We know that the inequality in Theorem 21.9 is tight when C is rational (isomorphic to
P1), but not in general. As we will show, for suitable divisors D (which will turn out to be
almost all of them), the quantity degD+1−`(D) tells us something intrinsic to the function
field k(C); roughly speaking, it measure how far C is from being rational.1 One way to
think about this metric is as a measure of the functions that are “missing” from k(C).

We now show that the degD + 1− `(D) is bounded, independent of D.

Theorem 21.15. There is a non-negative integer g such that

deg(D) + 1− `(D) ≤ g

holds for all D ∈ Divk C.

The proof below is adapted from [1, Prop. 1.4.14].

Proof. Let f ∈ k(C) be transcendental over k, and let A = div x 0. Let v , . . . , v be∞ ≥ 1 d

a basis for k(C)/k(f), where d = degA = [k(C) : k(f)] (by Corollary 19.24). Choose a
divisor B ≥ 0 so that div vi ≥ −B for each vi (this is clearly possible).

1Modulo annoying special cases like genus 0 curves that are not rational (and genus 1 curves that are not
elliptic curves). Such annoyances can be eliminated by insisting on at least one rational point.
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For any integer n ≥ 0, the set of functions S = {vif j : 1 ≤ i ≤ d, 0 ≤ j ≤ n} is clearly
linearly independent over k, since v1, . . . , vd are linearly independent over k(f) and f is
transcendental over k. And S ⊆ L(nA + B), since div(vif

j) ≥ −nA − B for all vif
j ∈ S.

Therefore
`(nA+B) ≥ d(n+ 1) = (n+ 1) degA (2)

for all n ≥ 0. But we also have nA ≤ nA+B, since B ≥ 0, and Corollary 21.11.c implies

`(nA+B)− `(nA) ≤ deg(nA+B)− deg(nA) = degB. (3)

Combining (2) and (3) yields

`(nA) ≥ `(nA+B)− degB ≥ (n+ 1) degA− degB = deg(nA) + (degA− degB).

It follows that
deg(nA) + 1− `(nA) ≤ degA− degB + 1

for all n ≥ 0. Let g = degA− degB + 1 so that

deg(nA) + 1− `(nA) ≤ g, (4)

where we note that g ≥ 0, by Corollary 21.11.d.
Now let D be any divisor in Divk C and write D = D0 − D as the difference of two∞

effective divisors. We claim that D0 is equivalent to an effective divisor D′ ≤ nA, for
some n. By Corollary 21.11.c, we have

`(nA)− `(nA−D0) ≤ deg(nA)− deg(nA−D0) = degD0,

and applying (4) yields

`(nA−D0) ≥ `(nA)− degD0 ≥ deg(nA) + 1− g + degD0.

The RHS is clearly positive for sufficiently large n, so pick n so that `(nA −D0) > 0 and
let f ∈ L(nA−D0) be nonzero. Now define D′ := D0 − div f so that

D′ = D0 − div f ≤ D0 − (D0 − nA) = nA,

as claimed. We have D ≤ D0, so `(D0)− `(D) ≤ degD0− degD, by Corollary 21.11.c, and

degD + 1− `(D) ≤ degD0 + 1− `(D0)

= degD′ + 1− `(D′)
≤ deg(nA) + 1− `(nA)

≤ g,

where we used D′ ∼ D0 equality, D′ ≤ nA to get the second inequality, and then (4).
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